Rebecca Gozzini, física: “Hemos observado el neutrino más energético jamás detectado”

Investigadora del Institut de Física Corpuscular y parte de KM3NeT, la colaboración responsable de este descubrimiento, explica la importancia de esta observación y cómo, desde las profundidades del Mediterráneo, podemos desvelar los misterios más ocultos de nuestro universo

El pasado 12 de febrero de 2025, el telescopio de neutrinos KM3NeT anunció un hallazgo sin precedentes: la detección del neutrino cósmico más energético observado hasta ahora. Se estima que su energía era de 220 petaelectronvoltios (PeV). Esta energía es equivalente a la de una pelota de ping-pong moviéndose a unos 18 km/h, pero concentrada en una partícula subatómica.

KM3NeT está instalado en las profundidades del mar Mediterráneo. Consta de dos detectores: ARCA, optimizado para captar neutrinos cósmicos de alta energía y ORCA, orientado al estudio de neutrinos de baja energía originados en la atmósfera. Ambos están formados por miles de esferas que alojan sensores extremadamente sensibles, capaces de detectar el tenue destello de luz azul producido por un neutrino interactuando con el agua de mar o las rocas. Estas esferas están suspendidas en gigantescas estructuras verticales que se alzan desde el lecho marino. Conectadas a través de cables submarinos, transmiten las señales hasta estaciones costeras donde se reconstruyen y analizan las trayectorias de las partículas detectadas.

España forma parte de esta colaboración científica internacional a través, entre otros, del Institut de Física Corpuscular (IFIC), un centro mixto del CSIC y la Universitat de València. Allí trabaja la Doctora Rebecca Gozzini, investigadora distinguida del programa GenT de la Generalitat Valenciana y miembro del grupo VEGA (Valencia Experimental Group of Astroparticles). Su trabajo se centra en la búsqueda de materia oscura y en el estudio de fenómenos que no encajan dentro del modelo estándar de la física de partículas, la teoría que describe las partículas fundamentales conocidas y sus interacciones. Gozzini se unió a las colaboraciones ANTARES —precursora de KM3NeT— y KM3NeT en 2017. Desde entonces, ha liderado investigaciones pioneras, como la búsqueda de señales de materia oscura en el centro de la galaxia y estudios conjuntos con el telescopio IceCube —un observatorio de neutrinos instalado en el hielo antártico—. Actualmente, coordina el grupo de trabajo sobre materia oscura y física exótica en KM3NeT.

Durante siglos, la astronomía se ha basado en la observación de la luz emitida o reflejada por los cuerpos celestes. La llegada de telescopios como KM3NeT adentra a la astronomía en una nueva era de la exploración del cosmos, abriendo una ventana hacia los confines más oscuros y energéticos del universo, desvelando misterios que hasta ahora permanecían ocultos.

Empezando por lo básico, ¿por qué son interesantes los neutrinos cósmicos, en particular los de altas energías?
Desde hace algunas décadas, se realiza lo que se llama astrofísica de neutrinos. Esto significa que, para explorar el universo no sólo observamos la luz que llega del espacio. También analizamos otras señales, como los rayos cósmicos —partículas subatómicas que vienen del espacio exterior— y los neutrinos.

La astrofísica y astronomía centradas en el estudio de la luz se enfrentan a la dificultad de que los fotones —partículas de luz— pueden, en su camino a la Tierra, interactuar con polvo cósmico o, incluso, otros fotones. Esto provoca una pérdida de energía del fotón, lo que limita la capacidad de extraer información sobre su origen. 

En cambio, los neutrinos interactúan muy poco con la materia, con lo cual pueden viajar desde distancias muy lejanas, manteniendo su dirección y preservando intacta toda la información de su origen. El desafío es que los neutrinos interactúan muy débilmente, incluso con el detector mismo. 

En cuanto a la energía, al buscar neutrinos siempre encontramos algunos que vienen de la atmósfera terrestre. Son inevitables, pero sabemos muy bien cuántos de ellos esperar a distintas energías. A energías muy altas, simplemente no se espera que aparezcan neutrinos atmosféricos. Por eso, si detectamos un neutrino de energía muy alta, es seguro que su origen es cósmico, ya sea de nuestra galaxia o más allá.

«Si detectamos un neutrino de energía muy alta, es seguro que su origen es cósmico»

¿Cuál es ese origen cósmico de los neutrinos? ¿Se sabe cómo y dónde se producen?
Las fuentes de neutrinos se han comenzado a medir muy recientemente. De hecho, la primera fuente de neutrinos de muy alta energía fue identificada en 2017, por lo que hablamos de una disciplina muy nueva. Estas fuentes deben ser objetos astrofísicos capaces de acelerar partículas pesadas, como protones o núcleos, a energías extremadamente altas. Un ejemplo son los Núcleos Galácticos Activos (AGN, por sus siglas en inglés), objetos alimentados por el material que cae dentro de un agujero negro en el centro de una galaxia. Los AGN emiten “chorros” compuestos por fotones y otras partículas que pueden interactuar entre sí dando lugar a la producción de neutrinos.

También existe la hipótesis de los neutrinos de origen cosmogénico, es decir, que provienen de la interacción de rayos cósmicos con los fotones del Fondo Cósmico de Microondas —la luz más antigua observable en el universo—. Estos fotones son de energía muy baja, pero están presentes en todo el universo. Un rayo cósmico, como un protón acelerado, puede interactuar con estos fotones, desencadenando un proceso que culmina en la producción de neutrinos.

Entrando más en la parte experimental: generalmente, las partículas subatómicas se detectan porque, al atravesar un sensor, interactúan con la materia en él generando una corriente eléctrica que podemos medir. Si los neutrinos apenas interactúan con nada, ¿cómo los detecta KM3NeT?
Exactamente de la misma manera que otras partículas subatómicas, pero con una diferencia importante: la masa del detector debe ser gigantesca. En este caso, ¡todo el planeta! Lo que hacemos es colocar el detector en un medio natural transparente, ya que construir un volumen tan grande como un kilómetro cúbico sería imposible. En el caso de KM3NeT este medio es el mar Mediterráneo.

«Para detectar neutrinos, la masa del detector debe ser gigantesca. En este caso, ¡todo el planeta!»

De esta manera, el neutrino interactúa con un núcleo atómico, que puede ser de la roca, agua o cualquier otro material que forme parte del detector. El neutrino “golpea” este núcleo y, como resultado de la interacción, se crea una partícula cargada con una velocidad mayor a la de la luz en el agua, que es la que podemos detectar.

¿Cómo es eso de que la partícula cargada viaja más rápido que la luz en el agua?
La velocidad de la luz disminuye cuando la luz pasa a través de un medio. Por ejemplo, en el agua es más lenta que en el vacío, donde tiene su valor máximo. Cuando una partícula cargada cruza este umbral de velocidad  —siempre dentro de un medio, esto es imposible en el vacío—, se produce un fenómeno conocido como efecto Cherenkov. Lo que sucede es que la partícula cargada empieza a emitir luz, fotones, debido a un proceso de ionización del agua. Al ser fotones (luz), se mueven más lento que la partícula. Como resultado, los fotones forman una especie de cono alrededor de la partícula, algo similar a lo que sucede cuando un objeto rompe la barrera del sonido. Esta luz es lo que nos da la señal eléctrica que podemos medir con sensores sumergidos en el mar.

¿Qué condiciones necesitan esos sensores para poder detectar correctamente esa luz?
Es fundamental que los detectores se ubiquen en una zona completamente oscura para que no haya luz natural que pueda distorsionar las mediciones. Para lograrlo, se instalan a profundidades que alcanzan hasta 3,5 km bajo la superficie del mar, donde la oscuridad es total. Aunque existen otras fuentes de luz, como la bioluminiscencia marina y la radiación del potasio-40 presente en la sal del agua, pero estas pueden modelarse y eliminarse del análisis.

Adentrándonos ahora en el anuncio de la colaboración KM3NeT sobre la detección de un neutrino de ultra alta energía, ¿a qué se debe que esa observación sea tan especial?
Fue una observación inesperada, en el buen sentido. El detector aún no está completo, por lo que no se esperaba tener la suerte de registrar un evento de este tipo tan pronto. Sin embargo, como el detector es modular, puede empezar a recopilar datos mientras se siguen instalando nuevas partes. 

Lo que hace especialmente interesante a este neutrino es su energía extremadamente alta, estimada en 220 PeV. A energías tan elevadas la Tierra se vuelve opaca para los neutrinos, ya que la probabilidad de que interactúen con la materia aumenta. Sin embargo, este neutrino llegó con una trayectoria casi horizontal, atravesando una cantidad de roca y agua que fue suficiente como para bloquear otras partículas provenientes de la atmósfera, pero no tanta como para detener al propio neutrino. Esto nos permitió concluir con certeza que no solo se trataba de un neutrino, sino que este era el más energético jamás detectado y también la partícula elemental más energética jamás medida.

¿Qué sabemos de momento sobre el origen de este neutrino sin precedentes?
Una vez detectado, se intentó identificar su origen. Se investigó si podía asociarse con algún objeto astronómico conocido, pero no se encontró ninguna correlación concluyente. Se analizaron 17 blázares —un tipo de AGN— seleccionados en función de sus características astrofísicas y su posición en el cielo. Sin embargo, no se alcanzó el nivel de certeza estadística necesario para confirmar que alguno de ellos fuera el origen del neutrino.

Debido a esta falta de una fuente identificada, se exploró la posibilidad de que el neutrino tuviera un origen cosmogénico, es decir, que provenga de interacciones de rayos cósmicos con el fondo cósmico de microondas. No obstante, este análisis aún no es concluyente.

También se consideró la hipótesis de que el neutrino tuviera un origen dentro de nuestra galaxia, pero esta opción es altamente improbable. Su energía es demasiado alta para que haya quedado atrapado en la Vía Láctea y, además, no se detectó ninguna estructura en la región de su llegada que pudiera haberlo generado, como restos de supernovas o nubes moleculares.

Por ahora, la hipótesis más plausible es que su origen sea extragaláctico, aunque sin una fuente específica identificada en su dirección.

¿Podría ser que la fuente de este neutrino no sea ninguna de las que ya conocemos? Es decir, que exista otro tipo de fuente de neutrinos de alta energía que nuestros modelos actuales no contemplan.
Esta es una posibilidad que también estamos investigando: en lugar de que el neutrino adquiera su energía a través de un proceso de aceleración astrofísica —como ocurre en los AGNs o en explosiones estelares—, podría haber surgido de la desintegración de una partícula desconocida extremadamente masiva. Por ejemplo, de materia oscura superpesada. Esta sería una hipótesis alternativa al origen convencionalmente esperado para neutrinos de tan alta energía.

¿Es posible que se detecten otros neutrinos con esta energía o incluso más energéticos?
Sí, es posible medir más neutrinos de esta o de mayor energía, pero son descubrimientos fortuitos que no se pueden predecir. Nosotros trabajamos siempre con simulaciones y si te basas en esas simulaciones, este evento es realmente excepcional. Si lo comparas con el resto de neutrinos que hemos registrado en este tiempo, este claramente se sale de la media.

Aun así, existen modelos que predicen la existencia de neutrinos cosmogénicos con energías incluso mayores, de hasta 1000 PeV o más. Por otro lado, existen fuentes de neutrinos que no son estables en el tiempo. Estas, junto con ciertos otros fenómenos astrofísicos, son fenómenos extremadamente raros e impredecibles para los que hay que estar siempre listos y observando.

«Son fenómenos extremadamente raros e impredecibles para los que hay que estar siempre listos y observando»

Poniendo ahora la vista en el futuro, ¿cuáles son los próximos pasos para el telescopio KM3NeT?
Gracias a que los detectores son modulares, el telescopio ya está operativo mientras sigue expandiéndose. Una vez completo, el telescopio verá aumentado su volumen eficaz, lo que implica una mayor capacidad de detectar eventos, lo cual es fundamental para mejorar la precisión de las medidas.

Otro de los próximos pasos importantes para KM3NeT es avanzar en el desarrollo de alertas multimensajero. Estas alertas forman parte de una red global de colaboración entre distintos observatorios —incluidos telescopios ópticos, de rayos gamma, rayos X, radiotelescopios, detectores de ondas gravitacionales y detectores de neutrinos— que comparten información en tiempo real sobre eventos astrofísicos excepcionales. El objetivo es que, cuando uno de estos instrumentos detecta algo interesante, los demás puedan reaccionar rápidamente y observar ese mismo suceso astrofísico. Actualmente, KM3NeT ya recibe alertas de otros experimentos y está en proceso de implementar un sistema para poder enviar sus propias alertas. Esto se está desarrollando, en parte, en el grupo de investigación VEGA del IFIC. Aunque KM3NeT no puede «apuntar» a una zona del cielo como lo haría un telescopio convencional —porque sus sensores están fijos en el fondo marino—, su capacidad para detectar eventos inusuales y compartir esa información en tiempo real con el resto de la comunidad científica será clave para seguir construyendo una imagen más completa del universo.

Además de explorar el cosmos, ¿qué otros objetivos tiene KM3NeT?
KM3NeT también tiene otra función importante a través de su detector llamado ORCA, diseñado para detectar neutrinos atmosféricos y estudiar un fenómeno conocido como oscilación de neutrinos, un proceso que ya ha logrado detectar con un nivel de certeza altísimo. ORCA tiene un gran potencial para estudiar las propiedades de los neutrinos, ya que la enorme cantidad de datos obtenidos permiten medir una gran variedad de efectos, lo que abre la puerta a nuevos descubrimientos sobre estas partículas.

«El futuro de KM3NeT es muy prometedor y abarca un amplio rango de investigaciones científicas»

En definitiva, KM3NeT no solo es y será un telescopio para la observación del cosmos, sino también un instrumento clave para estudiar las propiedades fundamentales de los neutrinos. Su futuro es muy prometedor y abarca un amplio rango de investigaciones científicas.

Avelino Vicente: “És prompte per a descartar que el Gran Colisionador d’Hadrons (LHC) trobe el camí cap a la nova física”

Avelino Vicente, investigador de l’IFIC

Avelino Vicente Montesinos és físic especialitzat en física teòrica de partícules, la rama d’aquesta disciplina que estudia els components elementals de la matèria i les interaccions entre aquests.  Es va doctorar l’any 2011 a la Universitat de València amb una tesi on explora les implicacions de diversos models que expliquen la massa dels neutrins en el marc d’una teoria supersimètrica (Phenomenology of supersymmetric neutrino mass models), això és , el paper que juga la massa dels neutrins –no contemplada en el model estàndard de la física de partícules, però confirmada experimentalment pel descobriment de les oscil·lacions de neutrins- en un model teòric anomenat supersimetria, que pretén omplir els «buits» que té el model estàndard, com la esmenada massa dels neutrins, la integració al model teòric de la força gravitatòria o la existència de la matèria fosca.  

Posteriorment, Avelino ha realitzat diverses estances d’investigació en països com Alemanya, Suïssa, França o Japó. Actualment és investigador post doctoral a l’Institut de Física Corpuscular (IFIC), centre mixt del Consell Superior d’Investigacions Científiques (CSIC) i la Universitat de València. Continua immers en la recerca teòrica d’un nou escenari darrere del model estàndard de la física de partícules –ja que aquesta necessita una actualització-. Tot i que els resultats de l’LHC, el gran col•lisionador i accelerador de partícules situat a l’Organització Europea per a la Investigació Nuclear (CERN), ens indiquen que la supersimetria no és la teoria que busquem (o almenys no de la forma que ha estat plantejada), junt amb altres experiments com Belle (Japó) i BaBar (EUA) sí que ha obert la possibilitat de nova física en el sector de la física de sabor, en el que Avelino ha centrat el seu treball de recerca en els últims temps.  Aquesta disciplina explora les partícules elementals –els quarks, que formen els protons i els neutrons i els leptons, que constitueixen als neutrins i als electrons- dividits en tres famílies o sabors i estudia els processos que fa que aquestes partícules passen de ser d’una família a una altra.

Avelino Vicente ha publicat 45 publicacions diferents en revistes científiques d’alt impacte, rellevants en el camp de la física teòrica. A més, la divulgació del coneixement científic és una de les seues inquietuds, ja que és president de la Associació Sapiencia, una associació que té l’objectiu d’apropar la ciència a l’àrea de Sagunt, el Port de Sagunt i els voltants.

Què el va fer decantar-te per la física teòrica?

Des de sempre m’ha agradat el procés d’entendre un problema i em sembla que no hi ha problema més apassionant que la Natura. Quan un comença a
aprofundir en la comprensió de les regles fonamentals i descobreix com de
sorprenents són… és difícil no apassionar-se!

Què suposa per a un físic teòric haver tingut la oportunitat de treballar al CERN?

El CERN és la Meca de la física, un lloc de peregrinació al qual tots hauríem d’anar al menys una vegada a la vida. Estar al CERN és sentir-te part d’una cosa molt gran. A més d’estar en contacte amb els majors experts del món en la teua àrea de treball, et trobes pels passadissos amb gent treballant a la frontera de la ciència, el que et permet tenir un contacte de primera mà amb els seus experiments. És realment molt gratificant. D’altra banda, la gent ve i va contínuament, el que serveix per conèixer a moltes persones (de moltíssims països) interessants. El costat negatiu és precisament el mateix, la dificultat de tenir un grup d’amics constant. Com jo només vaig estar 3 mesos (a l’hivern de 2010-2011) no vaig arribar a notar-ho, però supose que les persones que estan de forma permanent han de tenir aquesta sensació.

Què s’esperava de l’LHC quan es va construir? Què va suposar el descobriment d’un bosó que s’ajustara a les prediccions del model de Higgs?

L’LHC tenia com a objectiu principal trobar el bosó de Higgs, així que sens dubte ha complert amb ell. L’altre objectiu central, trobar senyals de nova física, s’està resistint un poc més. Així que podríem dir que el bosó de Higgs ha tingut un sabor agredolç: d’una banda trobar-lo va ser una fita sense precedents, però que totes les seues propietats siguen les predites pel Model Estàndard ens ha deixat un poc decebuts.

Creus que la inversió que ha suposat, que inicialment fou de més de 2100 milions d’euros i que des de la seua construcció acumula un cost total de 6510 milions, està justificada?

Sense cap tipus de dubte. En primer lloc, perquè aquest tipus de grans empreses són essencials per a sentir-nos humans. En segon lloc, perquè apostar per ciència bàsica és apostar per revolucions científiques. No sabem què ens depararà el futur, però segur que molts descobriments actuals sense aplicació òbvia serviran per desenvolupar tecnologies que milloraran les nostres vides. No les podem preveure, però algú trobarà la manera d’aplicar aquest coneixement. I en tercer lloc perquè ja està servint per trobar aplicacions indirectes en altres camps: desenvolupament d’imants, física mèdica, etc.

Creus que caldria fer una nova inversió en nous acceleradors de partícules com els que ha proposat el CERN mateix (el Compact Linear Collider), Xina (el Circular Electron Positron Collider) o Japó (l ‘International Linear Collider?

Sí, però abans hauríem de pensar bé en quina direcció volem anar. El següent pas ha de recolzar-se en el que descobrim ara en el LHC, així que potser és un poc prompte per apostar per un camí o un altre.

La cancel·lació l’any 1993 del col·lisionador SCC per part dels Estats Units va provocar que Europa recollirà el seu testimoni com a líder mundial en la física d’altes energies. El projecte de l’HCL té data de caducitat, l’any 2025, i per a l’any vinent, el Consell del Cern haurà de decidir l’estrategia Europea per a la Física de Particules que presentarà davant de la Comisió Europea per a la seua aprovació. No obstant, Xina també té un ambiciós pla de futur al voltant de la física d’altes energies. Creus que Europa continuarà liderant en aquest apartat en el futur?

Crec que Europa seguirà tenint un paper protagonista en la física de
partícules, però possiblement els majors projectes en el futur pròxim es
duran a terme a Àsia. Tanmateix, no hem d’oblidar la gran presència
d’investigadors no europeus al CERN, per la qual cosa no em preocuparia
massa que el següent super-col·lisionador es faça a la Xina: la física
actual és global i tots tenim una aportació que fer.

Què hauria suposat la demostració del model supersimètric per a la comunitat científica? Penses que seria un canvi en el paradigma científic al mateix nivell que altres canvis històrics com la teoria de la relativitat, la de l’evolució o el descobriment de l’oxigen?

Hauria sigut un gran pas per entendre millor el món microscòpic, però no ho situaria al mateix nivell que els que comentes, molt més revolucionaris. La supersimetria és un bonic concepte que va néixer amb una motivació purament matemàtica, del que prompte es van apreciar propietats molt interessant per a la física de partícules. En concret, el Model Estàndard pateix d’un problema conegut com «problema de la jerarquia», consistent en la dificultat per entendre que el bosó de Higgs siga tan lleuger (podria haver sigut molt més pesat). I la supersimetria és la solució més popular a l’esmentat problema. En  l’actualitat, al no haver trobat rastres d’ella (de moment) ni de propostes rivals, ens estem començant a plantejar si estem entenent bé el problema de la jerarquia. També és cert que és encara prompte per descartar que l’LHC la trobe…

Però al LHC no s’ha trobat res al respecte, creus que a la comunitat hi ha ara un model amb tant de potencial com ho era aquest abans del LHC o esteu més bé en un punt de construir-ne un nou?

Estem vivint una època que podria anomenar «de transició», entre les expectatives i la realitat. Encara que algunes de les idees que teníem encara podrien ser possibles, algunes ja estan descartades completament. Vaig a posar-te un exemple. En el Model Estàndard algunes partícules es donen en tres còpies, a les que anomenem generacions, i alguns teòrics pensaven que podria haver més, quatre per exemple. Hui sabem amb absoluta seguretat que aquesta idea estava errada i que no poden existir més de tres generacions com les del Model Estàndard. I això es deu al fet que aquesta idea feia una predicció clara sobre certes propietats del bosó de Higgs. En no veure-les… fi de la història. No obstant això, hi ha altres idees més difícils de descartar perquè les seues prediccions no són tan directes. Amb aquestes costarà molt més tenir una conclusió convincent.

El Gran Col·lisiomador d’Hadrons del CERN. Foto: CERN

Dintre de la física del sabor, experiments recents han posat en entredit la universalitat leptònica- és a dir, una característica que segons el Model Estàndard explica que la interacció feble té la mateixa intensitat per a les 3 families de leptons Podria ser la violació de la universalitat leptónica una finestra cap a la nova física?  Creus que anomalies com aquestes poden portar solucions a preguntes com «què és la materia fosca»?

Les anomalies en física de sabor són ara mateix un dels temes més «calents» en la física de partícules. No tots els dies es troben desviacions respecte a les prediccions del Model Estàndard, i això per descomptat crida molt l’atenció. De confirmar-se (amb més dades experimentals), seria sense dubte la porta d’entrada a una nova física, que encara hem d’entendre completament. I en la meua opinió, aquesta porta ens hauria de conduir a resoldre altres problemes que el Model Estàndard deixa oberts, des de la matèria fosca que has comentat fins a l’origen de la massa dels neutrinos, també desconegut. Crec que seran anys apassionants.

En 2015 Takaaki Kajita y Arthur McDonald van rebre el premi Nobel de Física per una demostració rellevant en la física del sabor: la oscil·lació de neutrins. El teu grup d’investigació, a més, es dedica principalment a l’estudi dels neutrins. Què ha suposat aquest fet per a aquesta rama de la física?  

Va ser el reconeixement als pioners que van fer que a principis del segle XXI es donara un dels últims grans descobriments en la física de partícules: les oscil·lacions de neutrins. Si bé el Nobel no era necessari per convèncer-nos de la importància del descobriment, sí que ha servit per popularitzar-lo més. Ara no és tan estrany que una persona aliena al camp sàpiga el que és un neutri, i això crec que en gran mesura es deu a la visibilitat aconseguida pel Nobel.

Actualment eres investigador de l’IFIC. Quines línies de recerca estan portant-se a terme a aquest centre mixt entre el CSIC i la Universitat de València?

L’IFIC és un centre molt gran i no podria fer justícia a totes les
línies que es duen a terme. D’una banda tenim la unitat teòrica, del que soc part, en què s’estudia física teòrica de partícules, nuclear i de astropartícules, tant en el Model Estàndard com més enllà. Hi ha investigadors treballant en temes relacionats amb el bosó de Higgs, amb la física de sabor, amb la matèria fosca, els neutrins, l’LHC o entendre les interaccions fortes que uneixen el nucli. I d’altra banda, hi ha també la unitat experimental, en la qual trobem nombrosos investigadors participant en experiments de primera línia internacional. Els hi ha a la col·laboració ATLAS del LHC, però també en experiments de física nuclear o relacionats amb els neutrins, com DUNE, NEXT o KM3NeT. També hi ha línies de recerca en altres temes, com ara física mèdica i e-Ciència. I segur que he de demanar perdó perquè m’hauré deixat moltíssimes línies interessantíssimes…

Un rànquin publicat recentment ha situat l’IFIC com a tercer centre del món en l’estudi de la fenomenologia d’altes energies, un camp on tú has treballat en diverses ocasions. Que es sent al treballar en un centre que compta amb un reconeixement tan alt a nivell internacional?

Comparar sempre és difícil i no sé si ens tocava estar tercers, dècims o primers, però que se’ns tinga en compte a aquest nivell és una gran sensació. I la veritat és que l’IFIC s’ha convertit en un centre de referència mundial en la física de partícules. Comptar amb dues unitats, teòrica i experimental, genera un intercanvi que ens beneficia a tots.

Participes activament en qüestions de divulgació científica. Creus que es fa suficient divulgació del coneixement de matèries com les matemàtiques o la física? Creus que la societat està asabentada de l’estat de la física actualment?

Diria que en Espanya es realitza una divulgació de la física bastant raonable. Per sort, la física sol realitzar anuncis espectaculars de tant en tant, sent l’últim el del descobriment de les ones gravitatòries(vaja passada, no?), el que fa que tinguem una certa atenció del públic. Complementat amb una tasca de divulgació cada vegada més present en els centres de recerca, i també a càrrec de divulgadors professionals, estem veient que cada vegada més gent s’interessa per la física fonamental. D’altra banda, en el cas de les matemàtiques podem trobar grans divulgadors (i divulgadores!) però en un nombre desgraciadament molt menor. I això fa que la gent conega el bosó de Higgs i els neutrins, al menys d’oïda, però no tant què és una derivada. Aleshores, sí que crec que tenim una feina a fer en este cas, popularitzar les matemàtiques i millorar la seua imatge pública.

José María Benlloch: “Investigación biomédica hay de muy alta calidad, desafortunadamente no siempre saca partido la industria española”

La actividad del Instituto de Instrumentación para la Imagen Molecular (I3M) narrada por su director    

José María Benlloch / Foto: cedida por José María Benlloch

José María Benlloch es el director del Instituto de Instrumentación para la Imagen Molecular (I3M) actualmente, aunque su formación en física nuclear y de partículas difiere a lo que hace el instituto, Benlloch cuenta con una destacada carrera como investigador tanto fuera como dentro del I3M. Se doctoró en física de partículas en el Laboratorio Europeo de Física de Partículas Elementales (CERN). Su tesis doctoral consistió en los primeros datos obtenidos de un experimento de colisión de electrones y positrones acelerados a muy alta velocidad y energía. Para medir los resultados del experimento se utilizó un detector parcialmente creado en Valencia; a partir de estos datos, se concluyó la existencia de tres generaciones de neutrones ligeros y también se infirió de forma indirecta la existencia de una partícula elemental llamada quark top. Tras concluir su primera estancia post doctoral en el Fermi Nacional Accelerator Laboratory (Fermilab) en Estados Unidos regresó a España y se dio cuenta de que lo que aprendió en  detectores de partículas podría ser bastante útil para la medicina.

¿Cuál es el propósito a largo plazo de la actividad que realizan como institución?

A nosotros lo que nos gustaría a largo plazo es cada vez tener mayores ideas y contribuir al diagnóstico, a un diagnóstico mejor, más preciso y anterior, más precoz de distintas enfermedades. Estamos fundamentalmente interesados en el cáncer pero también en enfermedades mentales, tenemos un proyecto europeo que coordinamos nosotros de detección temprana de esquizofrenia y de otros problemas mentales como la depresión severa e incluso en el futuro nos gustaría contribuir al tratamiento. Estamos empezando a hacer algunas cosas con ultrasonidos y con nanoparticulas.

“Estamos fundamentalmente interesados en el cáncer pero también en enfermedades mentales, tenemos un proyecto europeo que coordinamos nosotros de detección temprana de esquizofrenia y de otros problemas mentales como la depresión severa e incluso en el futuro nos gustaría contribuir al tratamiento”

El instituto tiene su origen en la física de partículas. ¿Es una iniciativa de la Universidad Politécnica de Valencia o tiene algún otro origen?

Es una iniciativa del rector de la Universidad Politécnica de Valencia (UPV) y del Consejo Superior de Investigaciones Científicas (CSIC), al que yo pertenezco. Anteriormente yo pertenecía a otro instituto del CSIC, el Instituto de Física Corpuscular (IFIC), entonces en ese sentido también tiene origen en ese instituto que se dedica justamente a la física de partículas y donde hice mi tesis doctoral y me formé inicialmente, luego continué mi formación en el CERN y en el Fermilab en Estados Unidos. Posteriormente el rector de la Universidad Politécnica de Valencia, el CSIC, el delegado del CSIC en Valencia y el presidente del CSIC llegaron al acuerdo de crear este instituto.

¿Cuánto tiempo llevan en esta actividad? 

En la actividad del PET llevamos aproximadamente desde el año 1998, es decir,  casi veinte años. Otras líneas de investigación son más recientes, hemos trabajado alrededor de 3 años en resonancia magnética y en ultrasonido un año a partir de la incorporación de una persona que había estado algún tiempo investigando en ese campo; en rayos X, TAC, etc, llevamos mucho tiempo, a lo mejor unos diez o doce años.

¿Cuentan con el apoyo de alguna institución privada?

Contamos con financiación privada a través de proyectos y contratos, tenemos muchos contratos de empresas privadas para desarrollar equipamiento.

¿El personal que conforma el instituto tiene una formación en física o cuentan con personas que se dedican a la ciencia médica?

Tenemos muchos físicos en el instituto e ingenieros, fundamentalmente ingenieros electrónicos e informáticos y algún ingeniero mecánico. Médicos desafortunadamente no tenemos en el instituto, sin embargo trabajamos conjuntamente con ellos en los hospitales, es decir, nosotros pensamos que es de vital importancia trabajar con los médicos porque al final son los usuarios de los aparatos que desarrollamos por lo cual es importante que desde el principio intervengan en el diseño para que sea ergonómico y para que sea útil. Entonces sí trabajamos con médicos, pero no dentro del instituto.

¿Cuáles son los hospitales de Valencia que colaboran con el instituto?

El Hospital la Fe de Valencia es un hospital que comparte actividades de investigación con la Universidad Politécnica de Valencia y la Universidad de Valencia, pero también hemos trabajado con el Hospital Clínico, con el Hospital General y con el Hospital Universitario Doctor Peset. Fuera de Valencia también hemos colaborado con muchos hospitales, en  Europa y en Estados Unidos; en Europa con el Netherlands Cancer Institute que está en Amsterdam  y se dedica a la oncología, también con la Universidad de Karolinska (Instituto Karolinska) de Estocolmo y en Estados Unidos con el Massachusetts General Hospital, con la Clínica Mayo, es decir, hemos colaborado con muchos hospitales también.

¿Los equipos que han fabricado están siendo implementados o están en una etapa de desarrollo o de investigación?

Estamos en una etapa de desarrollo en la parte de tratamiento, en la parte de diagnóstico hay muchos equipos que están ya en los hospitales.

¿Puede mencionar algún equipo que ya esté siendo utilizado?  

El primer equipo que hicimos era una cámara pequeñita, una gamma cámara para la detección del ganglio centinela en intraoperatorio, esto lo utilizan los cirujanos para encontrar rápidamente dónde están los ganglios durante la intervención quirúrgica. Los ganglios están conectados directamente con el tumor y por lo tanto podrían tener una metástasis tumoral. Este aparato se encuentra en muchos hospitales de España, diría que por lo menos treinta hospitales de España lo tienen y también fuera de España, a lo mejor en total puede haber ciento cincuenta hospitales que tienen esta cámara. También existe un mamógrafo que desarrollamos aquí para la detección de tumores mamarios y está siendo implementado en muchas partes del mundo como por ejemplo China, Japón, Taiwán y Singapur.

¿España se encuentra en este momento bien posicionada en cuanto a investigación en el campo de la medicina?  

En el campo de la medicina desde luego hay muchos investigadores excelentes y en el campo biomédico; de hecho en España la mayoría se dedica al campo biomédico, en cambio lo nuestro es más bien ingeniería, ingeniería biomédica y no la pura biomedicina. Investigación biomédica hay de muy alta calidad, desafortunadamente no siempre saca partido la industria española, sino que de estas investigaciones se favorece muchas veces la industria extranjera; en la actualidad esto está empezando a cambiar, comienzan a surgir empresa biomédicas en España. Con relación a la ingeniería biomédica o física médica también está muy bien posicionada, no solo por nuestro instituto también por otros grupos de España reconocidos internacionalmente.