Sebastián Pérez. De planetas y charangos

Aunque en esa época todavía no entendía muy bien el lenguaje del arte, le invitaron a componer la música de una obra de Shakespeare.

–En Oxford, una compañía de teatro que quiere hacer Sueño de una noche de verano, me pide a mí que haga la música: un astrónomo que toca charango.

Y aunque fue como llevar a Shakespeare a los Andes, funcionó tan bien, que le invitaron a ser parte de la obra, con música en vivo y siendo él uno de los actores. Un actor que se iba de repente a un lado para tocar, pero siempre en el escenario. Y así hicieron dieciséis presentaciones en el castillo de Oxford.

Sebastián Pérez tocaba varios instrumentos y estudiaba la física de acreción de agujeros negros. Fueron los años en que este astrofísico chileno vivió en Inglaterra.

Primer piso. Segundo piso. ¿Té o café? De vuelta al primer piso. En la biblioteca, Sebastián Pérez me explica que, en el siglo XIX, el presidente Montt donó textos de astronomía valiosísimos al Observatorio Astronómico Nacional de Cerro Calán. Hoy el observatorio es parte de la Universidad de Chile, y en él tienen su oficina Sebastián Pérez y sus colegas del Núcleo Milenio de Discos Protoplanetarios.

La iniciativa científica Milenio es un sistema de financiamiento para grupos de investigación, que incluye una pequeña parte de divulgación. El núcleo milenio de discos protoplanetarios existe desde 2011.

–Yo me vine porque Simón [el director del núcleo], me invitó a unirme en el año 2011, y apenas llegué, Simón me planteó: “Oye, en el núcleo milenio quieren que hagamos divulgación. Y a mí me interesa mucho, pero creo que tú podrías hacerlo mejor. ¿Por qué no te encargas de esa parte?”; así que me empecé a meter más en el tema de la divulgación. Yo feliz, pero eso sí, es duro, porque es algo aparte. No puedo dejar de investigar por hacer divulgación científica. Tienen que ir las dos de la mano.

La experiencia ha sido, pese a todo, muy buena. Lo que le interesa a Sebastián Pérez es explorar distintos puentes y convergencias con otros sectores sociales. Dialogar con el arte ha sido, para él, muy interesante. A veces frustrante. A veces muy enriquecedor.

–Déjame mostrarte el libro que escribí de divulgación. Es una novela para niños, de nueve años en adelante. En diciembre se agotó, pero va a salir la segunda edición super pronto.

Sebastián Pérez nos muestra un libro, “Bitácora planetaria. Cazadores de eclipses”, donde literatura, astronomía e ilustración convergen a manos de Sebastián Pérez, Valentina Pérez, Daniel Albornoz y Amanda Sepúlveda.

–Cada capítulo de la historia de aventuras toca ciertos temas científicos. No sólo astronomía. También geología, paleontología, pero principalmente astronomía. Cosmovisión, también. Y de las conversaciones con la ilustradora, mientras yo le contaba los capítulos, ella creaba estas ilustraciones que eran… yo las encuentro maravillosas porque no es que sean una representación, sino que suman contenido. Son ilustraciones realmente maravillosas. Toda la novela es superverosímil, pero aun así permite un poco de exploración onírica y fantasía. Pero sí es verosímil. Y las ilustraciones son realmente maravillosas.

Lo que intentan los autores con esta novela es motivar y suplir la falencia que existe en la educación primaria y secundaria.

–Lo que te pasan en el colegio de astronomía son las estaciones del año, la rotación de la tierra, la traslación de la tierra, cosas que son conocimientos generales de astronomía antigua. No es para nada lo que es la astronomía hoy día. Y nosotros hoy estudiamos otro tipo de cosas. Mira, te voy a mostrar: la historia parte en ALMA, con las antenas, en el norte. Y en cómo el desierto de Atacama no está solo vinculado a la observación astronómica, sino también a la paleontología del sistema solar: muchos de los meteoritos que se estudian se encuentran ahí, en esta cama roja de roca.

Durante su segundo año en Inglaterra, Sebastián Pérez no quería seguir con su doctorado.

–Estaba estudiando la física de acreción de agujeros negros, que nacieron a partir de una estrella grandota. No tiene ninguna aplicación… Yo sentía que no tenía ningún aporte social, nada. Veía que en Chile estaba todo el movimiento estudiantil luchando por una educación gratuita y de calidad, y yo preocupado de los hoyos negros, en Inglaterra, donde nadie me necesitaba. Tuve una crisis absoluta. Y bueno, fui donde mi profesora, mi supervisora de doctorado, y le conté esto. Y ella me dijo: “Ya, tienes un punto. Pero de lo que tú no te has dado cuenta es que la astronomía es muy cercana a la gente. Que lo que nosotros estudiamos, el cielo, es el mismo para todos. Que es muy transversal, que es muy horizontal. Y sacando tu doctorado, terminando tu investigación en astronomía, en astrofísica, tú vas a estar en una situación privilegiada para poder aportar de una manera diferente y más potente.”

Él no quedó contento con esto y armó junto a ella un proyecto científico. No de divulgación científica, no de educación, sino de ciencia, pero con un impacto social muy grande. Lo llamaron Global Jet Watch Project.

–Estos agujeros negros varían en escalas de tiempo muy cortitas: horas, días. Entonces, para poder monitorearlos, para saber qué es lo que está sucediendo y cuáles son los procesos físicos importantes, debemos tener observaciones astronómicas todo el tiempo. No podemos observar un par de días en un telescopio acá en Chile, o en Estados Unidos, y con esos datos entender qué es lo que está sucediendo. Necesitamos un monitoreo más constante. Necesitábamos telescopios que estuviesen distribuidos a lo largo del globo. Porque puedes observar una noche completa, pero luego aparece el sol, y tienes que cerrar tu observatorio y te perdiste doce horas de información. Y al otro día, miras y todo cambió, y no sabes cómo seguirle nada. Así de complejos son estos objetos. Entonces lo que hicimos fue empezar a pedir plata.

Su supervisora, la astrofísica Katherine Blundell, logró juntar mucho dinero de particulares y fundaciones en Oxford, y organizaron este proyecto que consistió en instalar cuatro telescopios a lo largo del globo en distintos países: Australia, India, Sudáfrica y Chile. De este modo lograron tener una red de observación más constante puesto que al menos uno de los cuatro telescopios se encuentra siempre en horario nocturno. Los telescopios se instalaron principalmente en colegios donde hay niñas, para tratar de promover la inclusión de la mujer en la ciencia a través de un proyecto real de colaboración.

–Nosotros no les estamos regalando, a estas estudiantes de colegio, un telescopio para que jueguen, sino que estamos pidiéndoles ayuda. Necesitamos que ellas realicen las observaciones astronómicas, que participen en el proceso. Nosotros, como universidad, les entregamos el telescopio, el material, el apoyo técnico, pero ellas tienen que hacer las observaciones. Entonces se vuelve una colaboración, no es un proyecto asistencialista que viene a entregarle un telescopio a un pueblo pequeño en medio de la nada. El telescopio en la India está en un pueblo muy remoto, rural, en un colegio de seiscientos alumnos, super pobre, pero los cabros son muy inteligentes.

Global Jet Watch Project no es un proyecto meramente social, sino una colaboración científica. Para Sebastián Pérez, asegurar una continuidad no pasa por entregar a los niños una experiencia y luego irse. En cambio, decirles “trabajemos juntos” tiene un efecto mucho mayor.

Aunque Sebastián Pérez se desvinculó del proyecto después de participar en él durante casi cinco años, Global Jet Watch Project sigue en marcha.

–Esto es una estrella joven que está haciendo cosas muy extrañas. Esto son discos protoplanetarios. Y aquí buscamos estrellas gigantes alrededor de las cuales se están formando lunas. Este es el proyecto más importante que tengo, que trata de detectar un planeta en formación. Porque se han detectado miles de planetas ya formados, de exoplanetas, pero no en el momento en el cual se formaron. Y ese es el momento en el que está la física que nosotros queremos analizar. Este proyecto es para eso.

Sebastián Pérez navega en su cuenta del sitio web de ALMA, el radiotelescopio internacional ubicado en el desierto de Atacama. Nos muestra los distintos proyectos para los cuáles él es Investigador Principal (IP). ALMA es su observatorio favorito.

Alrededor de las estrellas nuevas se forman los discos protoplanetarios, donde los científicos creen que se están formando los planetas. Pero esos planetas no se han descubierto, nunca se han detectado directamente. Ahí es donde entra Sebastián Pérez con sus modelos. Con simulaciones hidrodinámicas, Sebastián Pérez empezó a dar formas a los surcos de los discos protoplanetarios, a causa de planetas que van creciendo. Son simulaciones de cómo ALMA debería ver ese mismo escenario. Y lo que ve es un patrón de mariposa multicolor.

–Lo interesante de esta propuesta es que nace de la teoría. Hay en Chile astrónomos que hacen modelamiento y teoría, pero son los menos. La mayoría son observadores. Yo trato de jugar los dos roles. Siempre como tratando de meterme entremedio de dos cosas.

–¿Eres la bisagra?

–¡La bisagra! ¡Qué buena! Es muy importante ser bisagra, sí. Estudio la formación de planetas haciendo simulaciones que inspiren observaciones.

Hay registros. Desde sus nueve años hay registros en su cuaderno de observaciones astronómicas: Sebastián Pérez, el niño, escribió que quería ser astrónomo. A esa edad empezó a hacer observaciones astronómicas. Primero solo, a vista desnuda. Y luego con binoculares. Nunca tuvo telescopio. Dice que nunca fue de tener telescopio.

Sebastián Pérez, el niño, conocía el cielo nocturno del hemisferio Sur al derecho y al revés. Luego se empezó a interesar por la física, la geología, la química, … y la astronomía, que lo engloba todo.

Rafael Yuste, neurocientífico español, ideólogo y líder del proyecto BRAIN, explicaba en una entrevista que el primer paso para empezar a comprender cómo funciona el cerebro humano, es desarrollar la tecnología capaz de “leerlo”. Recurría a una analogía: si lo que ocurre en el cerebro es una película en alta definición, actualmente solo somos capaces de captar uno o dos píxeles, por lo que estamos lejos de enterarnos de qué va la película.

–¿Cuán similar es la situación en la astronomía? ¿Sabéis de qué va la película?

–¡Uf, qué buena pregunta! No, no sabemos de qué trata la película. O sea, tenemos nociones. No sé si se ven más de dos píxeles, la verdad. Porque las observaciones que hacemos desde la Tierra, las hacemos a través de ventanitas del espectro electromagnético, verdaderas rendijas por donde la luz logra pasar sin ser absorbida por moléculas de la atmósfera. Esa luz es información, es nuestra manera tradicional de escuchar al Universo. Como mucho se pierde, hay mucho de la película que no vemos.  Y al mismo tiempo sucede que la película que estamos tratando de revelar sucedió muy lejos y hace mucho tiempo. El laboratorio de investigación del astrónomo puede ser muy lejano: está detrás de galaxias, de nubes moleculares, de nebulosas, de un montón de cosas que cuesta mucho estudiar. Y las escalas de tiempo de evolución de los sistemas planetarios… Estamos hablando de cientos de miles a millones de años. Entonces, me parece que vemos mucho menos que dos píxeles de la película. Tienes toda la película, y nosotros vemos un pedacito de la película a un par de píxeles. Y no vemos el resto de la película, porque el resto de la película sucede muy lento. Con un filtro encima, más encima. ¡Con gente tapándote en el cine! Y muy difícilmente veremos el final.

Pero con esos dos píxeles de una secuencia mínima de la película del universo, los científicos han hecho maravillas. Especialmente con ALMA, que abre la ventana de la luz que vibra y tiene su longitud de onda alrededor del milímetro. Una ventana que se venía explorando desde hace unos años con telescopios mucho más pequeños, con los cuales se veía todo borroso, pero mostraban que había algo interesante ahí. Ahora con ALMA, que es un arreglo de antenas que lo convierten en un telescopio equivalente a uno de dieciséis kilómetros de diámetro, se pueden ver muchos más detalles de procesos que los científicos se estaban perdiendo.

AATS: Arte, Astronomía, Tecnología y Sociedad. AATS nació como la propuesta de proyección al medio externo del núcleo milenio.

–Fue algo que se le ocurrió a Olaf Peña Pastene, que es un artista medial que en ese momento estaba en el Museo de Arte Contemporáneo, y que se acercó a nosotros. Vino para acá y habló con todos nosotros. La convergencia conmigo se dio más fácil. Yo trabajé en ese proyecto con él, en el primer AATS. Luego, en el segundo AATS, pasé a ser yo el director, y él pasó a ser colaborador: nos dimos vuelta los roles. Hicimos cosas distintas, cosas nuevas. Y así, AATS sigue con vida.

El primer año hicieron una instalación inmersiva sobre el proceso de formación planetaria, donde, a través de sonidos y traducción de sonidos de simulaciones hidrodinámicas, el espectador participaba en el proceso de formación de planetas.

El segundo AATS funcionó como una incubadora de proyectos. Sucedió en el día del arte y la astronomía, en el Museo de Arte Contemporáneo (MAC) de Santiago de Chile. Llegaron cincuenta artistas y nacieron cuatro proyectos de convergencia entre arte y astronomía, que fueron presentados más tarde ese año en el MAC. En cada proyecto un grupo de artistas y un astrónomo del núcleo creaban juntos, durante un mes, una obra artística.

Este año, AATS sigue vigente en forma de concierto audiovisual, con datos astronómicos y audiovisuales en vivo.

El pasado 17 de marzo, Chile celebró el Día de la Astronomía. Sebastián Pérez lo celebró tocando una pieza compuesta para charango, basada en las leyes de conservación de la naturaleza, sus simetrías y cómo se manifiestan. Fue en el concierto Cielos de Chile.

–Conservación de momentum, conservación de momentum angular, conservación de energía… Cada una de esas leyes tiene asociada una simetría en la naturaleza. Y a partir de eso, que es fundacional de la ciencia hoy en día, creamos esta pieza musical, que no es representacional, sino que trata de entregarle al músico y a la persona que lo escucha una intuición sobre estos procesos y estas leyes de la naturaleza.

No se trata de una transducción de sonidos: tomar una señal y transformarla en un sonido de manera arbitraria. Eso sería separar el proceso creativo del fenómeno astronómico. Se trata de entender y adquirir una intuición sobre los procesos astronómicos.

–Hay cosas que me hacen sentir que estoy cayendo. Hay cosas que te hacen sentir cosas. Utilizar esos elementos musicales para entregar una experiencia en la cual esta intuición se desarrolla. No es una cosa directa, es una cosa que cuesta bastante tiempo adquirir, pero para allá vamos, en esa dirección estamos explorando.

Para lograrlo, Sebastián Pérez y la compositora Anya Yermakova trabajaron juntos en un proceso que duró casi un año.

–¿Sabes lo que pasa? Que para hacer realmente convergencia entre arte y ciencia, no basta con ir y conversar con un artista un rato. Cada uno tiene que confundir su rol, y ensuciarse las manos con lo desconocido del otro.

–¿Como tú ponerte en la posición del artista, y el artista ponerse en la posición del científico?

–Quizás más que eso. Porque pasarse de un lado a otro, no te hace encontrarte en el medio. Yo puedo ir e intentar dármelas de artista y tratar de hacer una composición musical o una instalación audiovisual, pero eso sería auténticamente una obra de arte audiovisual y/o una composición musical, no algo nuevo, distinto, que habite realmente en el medio de las dos. Para eso se requiere mucho, mucho diálogo, mucho compartir, mucho… exponerse, y mucho dejar la zona de confort y ponerse en la zona de vulnerabilidad de uno. Y eso ha sido un proceso largo y bien difícil.

Sabían que querían hacer una obra musical que no fuera representacional. Sabían que querían hacer una obra más profunda. Sabían que querían explorar, expandir esa conexión entre el arte y la ciencia. Pero no sabían por dónde empezar.

Así que empezaron a conversar. Y el punto al que llegaron, y del que partirían después, es que tanto el artista como el científico, requiere mucho de su intuición durante el proceso creativo.

–Para avanzar en la ciencia tienes que agarrar una fórmula, romperla, sacar este término de acá, dividir por tal cosa, meterle este término nuevo. Y para hacer eso tienes que adquirir una intuición. Yo no puedo agarrar la ecuación de conservación de la energía, y jugar con ella sin haber adquirido una intuición sobre cómo hacerlo. Y eso es lo mismo que hace el artista. Cuando el artista agarra un montón de técnicas, de conocimientos, y quiere hacer una obra nueva, tiene que romperla de alguna manera, tiene que jugar con eso. Y ahí está el uso de esa intuición en el proceso creativo, que yo creo que es donde las dos áreas se unen. Donde las dos áreas habitan un espacio común. Y desde ahí, tratar de crear.

–¿Y ahora vais a seguir trabajando?

–Estamos en proceso.

23 de marzo, Observatorio Nacional de Cerro Calán, Santiago de Chile.  En uno de esos días indeterminados de principio de estación, Sebastián Pérez, un astrónomo que toca charango, me invita a subir.

Sebastián Pérez, en el concierto Cielos, interpretado por la Orquesta Juvenil de Pudahuel (Chile).

 

 

 

 

 

 

 

«Los planetas terrestres se forman a partir de granos de polvo estelar»

Javier R. Goicoechea, científico titular del CSIC en el Grupo de Astrofísica Molecular.

Estudia cómo evolucionan las nubes de gas y polvo interestelar, con la esperanza de desentrañar cómo son los primeros momentos de existencia de la materia sólida en el Universo.

Javier R. Goicoechea

Goicoechea muestra los resultados de sus investigaciones en Orión, llevados a cabo con ALMA. Foto: Jorge A. Vázquez.

El Instituto de Ciencia de Materiales de Madrid (ICMM) parece que está, literalmente, en una zona de guerra. Se escuchan, no muy lejos, armas de fuego, algunas de repetición, disparando en el polémico campo de tiro aledaño. Es polémico porque, de hecho, a veces se escapan disparos que acaban agujereando las ventanas de alguno de los centros de investigación que allí se encuentran.

La sede del Instituto es un edificio acristalado, moderno y de aspecto frío, con muchos despachos y laboratorios, comunicados por largos pasillos. Cuando hay alguna puerta abierta se ven complicados aparatos y a científicos trabajando, solitarios. No se parece en nada a un centro de investigación biológica, en los que hay microscopios, probetas y estanterías con atractivos frascos de sustancias diversas. Los físicos trabajan delante de ordenadores en los que analizan los datos de sus investigaciones.

La sobriedad del edificio se suple por la visión de los astrofísicos, que trabajan aquí desde hace pocos años. En las paredes de los despachos cuelgan fotografías e ilustraciones que reflejan paisajes astronómicos inmensos, de miles y millones de años luz. Los astrofísicos, analizando los datos que reciben de lejanos telescopios (ellos lo llaman «reducir datos»), se adentran en el espacio tiempo, trabajando para averiguar cómo se forman las semillas de los planetas como el nuestro. Por eso, en el grupo Nanocosmos, estudian el polvo de estrellas.

Goicoechea nos recibe en su despacho, con un apretón de manos, hablando de ciencia, señalando las zonas más interesantes de la Nebulosa de Orión, en una colorida y gran fotografía que ocupa la pared. «Cuando uno se dedica al cielo profesionalmente, llegas a casa después de diez horas de trabajo y se pierde un poco el romanticismo de la noche de verano.” Esas son las palabras con las que da comienzo la entrevista.

«Los astrofísicos dicen de nosotros que hacemos química, pero la química que hacemos es más cercana a la física cuántica.»

En Nanocosmos estudian la química de las nubes interestelares. ¿Se diría que son ustedes astrofísicos o químicos?

Somos astroquímicos o astrofísicos moleculares. Nanocosmos es un equipo multidisciplinar que estudia el gas molecular y el polvo estelar en el laboratorio y en el espacio. Los astrofísicos dicen de nosotros que hacemos química, pero la química que hacemos es más cercana a la física cuántica. Es una química muy física porque necesitas conocer los procesos cuánticos fundamentales, cómo colisionan las moléculas, cómo reaccionan.

¿Cómo es la química en estas nubes tan livianas?

Echando cálculos, estas nubes son tan grandes y tan poco densas que las moléculas que las forman tardan unos quince días en encontrarse unas con otras. Estamos acostumbrados casi a contar moléculas una a una. Las escalas temporales no tienen nada que ver con la química a la que estamos acostumbrados en el laboratorio. El otro aspecto es la temperatura criogénica, porque estas nubes están a entre 10 y 100 kelvin [entre -263º C y -163º C], nada que ver con las temperaturas de la superficie de las estrellas, que son de miles de grados. Hay materia en forma de gas molecular y de granitos de polvo.

¿Cuál es la proporción entre el gas y el polvo?

En estas nubes hay aproximadamente unas cien veces más masa en forma de gas que en forma de polvo, aunque el polvo no deja de ser una componente fundamental. Los granos miden unas décimas de micras, son refractarios, con núcleos de silicatos, de hierro o de otros elementos. Los granos, aunque sean pequeñísimos, están formados por trillones de moléculas. Estos granos tan pequeños empiezan a chocar, a agregarse en los discos protoplanetarios, creciendo hasta que se convierten en asteroides y en cometas. Piensa que en este momento nos encontramos sentados sobre un planeta terrestre. Los planetas terrestres se forman a partir de granos de polvo estelar, que es lo que estamos estudiando.

¿Se podría decir que es una química que va a cámara lenta? ¿Cómo pueden hablar de observar una evolución si tardan millones de años en producirse los cambios?

A los astroquímicos nos gusta mucho esta vertiente, porque en el universo podemos esperar mucho más tiempo, ya que la vida media de una nube molecular es de millones de años. Te parece lento pero es así, y las densidades son bajas porque las nubes son muy grandes. Existen otras galaxias con otras condiciones diferentes, incluso más extremas. Lo que tienes que hacer es intentar abarcar el mayor rango de escenarios posibles. Así podemos observar un panorama de evoluciones, y vemos muchísimas galaxias en las que hay regiones que son muy jóvenes, otras regiones donde se están formando estrellas y regiones donde las estrellas ya han explotado, así que puedes crear una línea evolutiva. Todo lo que estudiamos en las nubes está íntimamente ligado con el ciclo de vida de las estrellas.

¿Cómo es la materia interestelar en estas condiciones tan frías?

Se dan las condiciones físicas y químicas para que la materia esté en forma de moléculas y no en forma atómica. En el universo frío tenemos los dos extremos. La formación de estrellas en nubes moleculares, protoestrellas y, en el otro extremo, cuando mueren después de haber vivido en la secuencia principal, que se empiezan a enfriar y se vuelven a ver en el infrarrojo lejano. Es interesante porque vemos el principio y el final de las vidas de las estrellas. Más frías en el infrarrojo, en longitudes de onda largas [menor energía], más calientes en el visible y el ultravioleta. Los humanos sólo somos sensibles a los cuerpos calientes. A longitudes de onda más largas veríamos el universo frío.

la nebulosa de orion observada en infrarrojo

Esta es la imagen infrarroja de la Nebulosa de Orión que contempló a los contertulios durante toda la entrevista, colgada en la pared del despacho de Goicoechea. Fuente de la imagen: Observatorio Europeo Austral. ESO/J. Emerson/VISTA. Acknowledgment: Cambridge Astronomical Survey Unit.

¿Considera que su ámbito de estudio es una ciencia del vacío?

Yo no utilizaría la palabra vacío, porque el vacío no existe como tal. A diferencia de las estrellas y los planetas, las nubes moleculares tienen densidades mucho más bajas que las que se pueden conseguir en las cámaras de ultra alto vacío, en el laboratorio terrestre. Estas cámaras llegan a densidades de 100.000 moléculas por centímetro cúbico, que para nosotros sería una nube densa, donde se van a formar estrellas. Estas nubes densas se forman, pensamos, por colisiones de nubes difusas, que solo tienen 100 moléculas por centímetro cúbico.

«Con ALMA, por primera vez, vamos a poder resolver estas zonas de la fotosfera de las estrellas donde creemos que se forma el polvo.»

¿Se conoce el entorno concreto en el que se forma un grano de polvo interestelar?

Sabemos que hay dos entornos para formarse, bien en las explosiones de supernova, de estrellas masivas, bien cerca de la fotosfera de estrellas de baja masa, muy evolucionadas. Pero hay muy pocas estrellas masivas. Lo que más abunda son las estrellas de baja masa, como nuestro Sol. Cuando evolucione a gigante roja, en su envoltorio de gas, se producirán unas pulsaciones, donde parece que se darán las condiciones físicas para que se formen los granos de polvo. Ahí pensamos que se forma gran parte del polvo que hay en la Galaxia.

Entonces parece que hablamos de estrellas de tipo Mira, variables pulsantes.

Todo esto lo estamos compaginando con la parte astronómica, gracias a ALMA y a su resolución angular salvaje, estudiamos por ejemplo las estrellas tipo Mira que tú has comentado. Se caracterizan porque son pulsantes, se han enrojecido y a lo largo de su vida, cuando son maduras, expulsan gran parte de su masa en forma de una envoltura circunestelar, muchísimo más grande que la estrella. El Sol morirá de esta forma, convirtiéndose en gigante roja, expulsando gran parte de su materia, con la que nos barrerá a todos.

¿Cuál es el papel de la máquina Stardust en todas estas investigaciones?

Stardust es una máquina diseñada y construida con financiación europea, dentro de lo que llamamos Nanocosmos. Con ella pretendemos simular estas capas exteriores de las estrellas evolucionadas, que son las que creemos que dominan la Galaxia, para tratar de averiguar cómo se forma el polvo y qué tipo de polvo se forma, exactamente. Queremos averiguar cómo se forman, a partir de moléculas, los granos de polvo. En el ICMM hay físicos y químicos que hacen experimentos de superficies, de nanopartículas, de ultra alto vacío. Nos hablamos muchos con estos físico-químicos porque la nuestra es una ciencia tremendamente multidisciplinar. Este es el motivo por el que hay astrofísicos aquí.

Parece el sueño de un astrofísico, Stardust es casi como meter parte de una estrella dentro de una probeta. ¿Qué potencial tendrá esta información al relacionarla con la que se obtenga con ALMA?

Con ALMA, por primera vez, vamos a poder resolver estas zonas de la fotosfera de las estrellas donde creemos que se forma el polvo de nuestra galaxia. Para ello tenemos al Grupo de Materia Circunestelar, en el que trabaja el profesor José Cernicharo, que usan las altísima sensibilidad y resolución angular de ALMA para intentar observar el borde de una estrella altísimamente evolucionada. Con ALMA observamos la emisión del gas molecular, no el polvo. Creemos que, juntando la información de las moléculas con estos elementos refractarios en fase gas, con las moléculas y los experimentos en laboratorio con la máquina Stardust, podremos entender este paso de la materia de gas a sólido.

Ya se tomaron imágenes de discos protoplanetarios, en Orión, con el telescopio espacial Hubble. ¿Qué es lo nuevo que aporta ALMA?

Hacemos espectroscopía de altísima resolución y podemos saber la composición y ver dónde están las moléculas, además de su cinemática. La línea espectral tiene una morfología que permite saber si el disco protoplanetario se está fotoevaporando, o si está sufriendo otros procesos. La nebulosa de Orión es icónica y a pesar de ello no puedes pensar que te vaya a ayudar a explicar todo. Orión es interesante porque es la región de formación de estrellas masivas más cercana que tenemos. Mientras que una estrella poco masiva como el Sol va más despacio, las estrellas masivas viven tan rápido que, cuando empiezan a iluminar su entorno en ultravioleta, continúan embebidas en la nube molecular que las vio nacer.

De esto trata, precisamanente, su último trabajo publicado en Nature.

El objetivo del estudio es averiguar cómo influye esta retroalimentación de las estrellas masivas hacia su entorno (la nube de gas molecular), para saber si su efecto es negativo, destruyendo la nube por ionización; o si es un efecto positivo, que con la radiación ultravioleta induce una serie de procesos físicos complejos, calentando el gas, aumentando su presión, comprimiéndolo y formando grumos. Este último caso es el de los escenarios de formación estelar inducida. Según una de las teorías de la formación estelar, la segunda generación de estrellas se puede formar porque una primera estrella masiva induce la formación de grumos, favoreciendo que nazca una segunda generación de estrellas poco masivas.

«Pico Veleta es de los únicos sitios donde uno se puede seguir sintiendo astrónomo»

La antena de 30 metros del IRAM en Pico Veleta, Granada,  ha tenido siempre una gran importancia en radioastronomía milimétrica. ¿Qué expectativas de futuro tiene ahora, con ALMA funcionando ya a pleno rendimiento?

Acceder a tiempo de observación con ALMA es tremendamente complicado y competitivo. ALMA está abriendo una ventana al universo frío y todos los astrofísicos en un montón de campos diferentes quieren trabajar con ALMA, por esta faceta de que la astrofísica hoy en día es multi longitud de onda. Pero solo se aceptan unas pocas propuestas. Una de las formas de ser más competitivo en la radioastronomía de ALMA, que es milimétrica y submilimétrica, y de conocer bien los procesos y escribir buenas propuestas, es acceder antes de ALMA a otros radiotelescopios milimétricos. Y el mejor radiotelescopio en ondas milimétricas es el de Pico Veleta. De hecho es una herramienta puntera en muchos campos de astrofísica molecular. Es de las pocas donde un estudiante de tesis puede puede dirigir la antena y ver a dónde está apuntando. En los nuevos telescopios espaciales, y en ALMA, es tan complicado que jamás vas a observar in situ, porque ahora te bajas un archivo y trabajas con los datos desde tu despacho.

Hay incluso una componente sentimental con la antena de Pico Veleta

Pico Veleta es de los únicos sitios donde uno se puede seguir sintiendo astrónomo,  formándose en tiempo real. Para un astrofísico es extraordinariamente placentero y muy importante. Es una forma muy buena de seguir formando a gente muy buena en milimétrica, que luego pueda competir mucho más en ALMA. Un estudiante que hace una tesis, hoy en día, no tiene por qué observar con un telescopio, por la complejidad que conlleva y los presupuestos que se manejan. Incluso en SOFIA, mucho más barato que un telescopio espacial, un vuelo de 8 horas de observación cuesta entre 150.000 y 200.000 dólares. Es tan caro que no te dejan hacer nada, aunque vayas en el vuelo. Tienes un grupo de astrónomos que está observando para ti. No pueden permitirse el lujo de que se cometa un error.

Los planes estatales de investigación científica le piden, a la ciencia, la generación de conocimiento cuyos resultados supongan avances cualitativos y significativos en el ámbito científico y tecnológico. ¿Cree que la ciencia debe servir siempre a un fin material e inmediato?

No. La ciencia y la investigación son parte del ser humano. La ciencia tiene una parte más aplicada, de conseguir cosas que le sirvan al ciudadano ahora mismo, control del tráfico, medio ambiente, qué se yo. Pero todo desarrollo intelectual necesita la investigación básica, donde uno se centra, como en nuestro caso, en problemas físico-químicos fundamentales, y eso a largo plazo siempre va a dar cosas inesperadas. Los astrónomos, sin pensar en la telefonía móvil, desarrollaron las observaciones con instrumentos electrónicos y las técnicas de CCD; y aunque la gente que invirtió en astrofísica no pensó en aplicaciones inmediatas más allá de la investigación, ahora millones de personas llevan una cámara en sus móviles. Y así en miles de campos. Limitar la ciencia a sus aplicaciones para hoy puede ser muy pobre.

Sería entonces el clásico papel de agente externo impulsor de la producción y del progreso social. ¿Puede haber ciencia solo por el placer de conocer?

Pero eso es solo para el científico. Ahora la ciencia y el conocimiento humano son tan complejos y detallados que el científico solo aporta pequeños granos de arena a una montaña colosal de conocimiento. Siempre la investigación fundamental va a ser la primera locomotora para que en años puedan surgir aplicaciones de uso mundial. ¿Por qué la gente iba a invertir en matemáticas fundamentales? Resulta que esas matemáticas ahora pueden servir para crear algoritmos de seguridad para un ordenador, etc.

Cuando Kepler estableció las leyes de movimiento de los planetas no esperaba lo que ha venido después.

Claro, Kepler no estaba pensando en satélites. Pensar que la ciencia tiene que dar dinero y patentes inmediatas es muy pobre. Los países desarrollados, no solo más ricos sino con mejor nivel de vida, son curiosamente los países que invierten más en ciencia. Por algo será también.

«Hay una diáspora española. Para gente joven que empieza ahora, es una carrera con muchos obstáculos y hay muy pocas plazas.» 

¿Influye este materialismo en vuestro grupo de trabajo?

En España cada vez hay menos inversión en ciencia en investigación fundamental. Sí que se ha notado que hay menos financiación para becas en España, hay menos tesis y contratos postdoctorales financiados. Sacarse una plaza fija es una quimera. La edad media del personal de CSIC ha aumentado, no hay reemplazos para los investigadores que se están jubilando ahora. La tasa de reposición es como de uno a diez. El sistema está encogiendo y no damos abasto. Un científico no está solo en el despacho, tiene que hacer trabajo administrativo, viajes. Y en 10 años se va a notar mucho más.

edificio del ICMM

La sede del Instituto de Ciencia de Materiales de Madrid. Foto: Jorge A. Vázquez.

Parece que la ciencia española logró un cierto reconocimiento internacional antes de la crisis. ¿Cómo le han afectado los recortes a nuestro prestigio?

Hay una diáspora española. Se ha pasado a lo contrario en demasiado poco tiempo, a que haya mucha gente que, a pesar de llevar una carrera científica, vea imposible regresar a España, por no poder sacar una plaza fija. Eso, aparte de ser frustrante a nivel personal, es una pérdida constante de recursos, porque son gente que está dando beneficios en otros países receptores, como Estados Unidos y Alemania. Pero seguimos teniendo un papel importante porque en España se trabaja mucho. Nuestro grupo es muy competitivo y obtiene financiación porque nos dejamos la piel en la investigación científica, lo que nos permite, con menos recursos, competir al mismo nivel que otros países más ricos. Antes de la crisis, todos los ámbitos del Estado funcionaban bien y había muchas más plazas en el CSIC, más contratos de tesis, de postdoc… Para la gente joven que empieza ahora, es una carrera con muchos obstáculos y hay muy pocas plazas.

¿Teme por su futuro profesional?

He tenido la suerte de haber sacado la plaza el año pasado. Pero durante cinco años, en España, he estado muy asustado, porque había largos periodos en los que no se convocaba ninguna plaza. Estuve trabajando en París cuatro años, y volví. La posibilidad de tener que regresar al extranjero era complicada a nivel familiar y es muy duro plantearse abandonar tu profesión a los cuarenta. Yo tengo compañeros que han decidido, o bien dejarlo, o bien volver a Estados Unidos. Me siento un afortunado porque yo, lo que quiero hacer, es ciencia. Pero por mucho que me saque una plaza, si el sistema no me financia ni me da recursos en forma de, por ejemplo, estudiantes, quizá algún día me tenga que plantear irme al extranjero.

¿Qué recuerdos guarda de sus estancias en el extranjero?

Buenísimos. Completamente recomendable a nivel profesional y personal. Es un requisito para todo científico, además de que como persona te enriquece. Aprendes a trabajar con otra gente, con otras formas y objetivos. Es una época crítica en la vida de un científico para establecer conexiones de trabajo. Como la instrumentación es tan complicada, la ciencia son grandes colaboraciones internacionales en las que uno tiene que, además de ser medianamente inteligente, saber hacer vida científica social. Tengo mucha suerte con la gente con la que trabajé allí, siguen siendo mis colaboradores más estrechos. La vertiente personal es también muy satisfactoria. Ha sido mi estancia más larga.

 

«No hay que contentarse con lo que te da la ciencia hoy.»

En relación con los retos que plantea el futuro, háblenos del proyecto SPICA, en el que anda metido.

Iba a ser el nuevo sustituto del telescopio espacial Herschel. En astrofísica siempre quieres ser más sensible, detectar otros objetos más tenues, llegar al universo profundo, el universo primitivo. Hay dos formas de incrementar la sensibilidad de un telescopio. Bien aumentando el tamaño del espejo primario, o en el infrarrojo, como estamos detectando la emisión térmica de objetos lejanos, refrigerando el telescopio, para que toda la instrumentación emita lo menos posible. Herschel es el telescopio espacial más grande jamás enviado al espacio. Su espejo tenía 3,5 metros. Pero no estaba refrigerado activamente, sino que su temperatura era la del punto del espacio en el que se encontraba, a 80 kelvin [-193º C]. SPICA es un proyecto como Herschel, pero refrigerado activamente a 5 kelvin [-268º C], todo el espejo, toda la óptica y los detectores. Ahora hay tecnología suficiente para refrigerar grandes masas.

Habla de SPICA en pasado. ¿Ha sido cancelado?

El proyecto SPICA está vivo. Hubo una selección que superamos hace unos años. Y ahora en junio la ESA tiene que elegir tres. De los cincuenta que había, al final solo va a quedar uno. En época de vacas flacas el desarrollo de un telescopio espacial tiene muchos pasos, compite con otros de otras longitudes de onda. Por lo tanto, para que una misión espacial vuele, se necesitan alrededor de veinte años de trabajo previo.

Por eso publica todos esos artículos en los que parece que se está vendiendo el instrumento.

Ahí trato de demostrar que tengo una contribución a la parte tecnológica. Cuando uno se mete en este desarrollo de telescopios espaciales, tiene que publicar artículos donde se muestre. Pero son «papers» que no te van a citar mucho: «White papers», «yellow books», etc. Hay una terminología de artículos donde uno publicita las características de un futuro telescopio. Pero te quita de publicar y no le puedes dedicar todo tu tiempo. Hay una especie de competición y “las cosas de espacio van despacio”, como nos gusta decir a los que trabajamos en esto. También me interesa, y trabajo en ello, la vertiente tecnológica. No soy ingeniero, pero suelo trabajar con ellos, ya que unos y otros tenemos que colaborar. Es una vertiente que me gusta, y no solo estar en el despacho reduciendo datos. También he contribuido al posible desarrollo de un interferómetro espacial, con cinco radiotelescopios volando comunicados por láser. No hay que contentarse con lo que te da la ciencia hoy.

Tengo entendido que ha volado con SOFIA. ¿Por qué es tan importante este observatorio?

SOFIA nos permite observar algunos trazadores que no podemos observar desde Tierra. Como la criogenia de Herschel se evaporó, el único telescopio que ahora tenemos para operar, en algunas longitudes de onda del infrarrojo lejano, es SOFIA. Tiene una cámara con el equivalente a siete píxels, pero con instrumentos radio, heterodinos. Es un desafío tecnológico, pero mucho más barato que un satélite. Es un Jumbo modificado, que lleva un telescopio de 2,5 metros, que intenta volar a unos 13 km por encima del nivel del mar, en la estratosfera, dos kilómetros por encima de donde vuelan los aviones comerciales. Ahí el vapor de agua atmosférico se reduce tanto que se puede empezar a observar en el infrarrojo lejano.

Debe de ser una experiencia volar en esas condiciones.

Entras a una base de la NASA, con todo lo que significa eso, te sientes como un pequeño astronauta, con tu identificación y escoltado en todo momento. Si a un astrónomo le dan una propuesta de observación con SOFIA, la NASA le invita a volar con ellos. Tienes que ir a un pequeño pueblo de California, Palmdale, a una base del ejército de los Estados Unidos. Antes de despegar tienes el mission breafing, donde te juntas con el director de la misión, los pilotos, meteorólogos, el de motores, estilo americano, todo el mundo hablando muy profesional, describiendo cada uno de los detalles de la misión. Hasta que te preguntan: “Astrónomos, ¿qué vamos a hacer hoy?” Te tienes que levantar delante de todos los militares americanos y decirles, solemnemente. “Pues vamos a observar una región de Orión que está iluminada por estrellas que emiten en ultravioleta.” – Risas. – Luego te invitan a despegar y aterrizar en la cabina, con los pilotos.

¿Han observado la misma zona, dentro de la Nebulosa de Orión, de la que hablábamos antes?

En esta investigación se trataba de llevar a cabo el proyecto de cartografiar toda la nube, en la emisión más intensa del carbono ionizado C+. Es una linea que sólo se puede observar desde la estratosfera, la más brillante en la que emite el medio interestelar. La observábamos antes con Herschel.

C+ es el ión de carbono al que sólo le falta un electrón.

Exactamente. Llega un fotón ultravioleta de las estrellas y se lo arranca. Tiene una línea en el infrarrojo lejano, a 158 micras, que es la emisión más intensa del medio interestelar, la más brillante. Estamos haciendo un mapa de toda la nebulosa de Orión, haciendo un cartografiado de toda la región, con la salvedad de que no es una imagen estática, sino que hacemos una película. Voy a mostrártela.

 


El espectro electromagnético y la radiación infrarroja

el espectro electromagnetico

El espectro electromagnético abarca desde las ondas de radio hasta los rayos gamma; pasando por las microondas, infrarrojos, luz visible, ultravioleta y rayos X, todo son ondas electromagnéticas, con distintos rangos de energía. Fuente: ALMA.

Es imposible comprender, no ya el Universo, sino el mundo, sin tener una idea, por básica que sea, sobre las ondas electromagnéticas. La luz lo es, pero también las microondas y el «wi-fi», las ondas de radio, los rayos ultravioleta y los rayos X. Los físicos hace ya mucho tiempo que estudian estas ondas, dentro lo que hoy conocemos como espectro electromagnético.

La astrofísica, hoy en día, es multi longitud de onda. Los problemas que tenemos son tan complicados, que para intentar entenderlos, no te puedes dedicar sólo a una longitud de onda del espectro electromagnético. – Explica Goicoechea. – A lo mejor hace veinte años sí que había una figura del radioastrónomo, o del astrónomo infrarrojo. Al menos desde mi visión, para tratar de atacar los problemas de forma conjunta, uno tiene que intentar observar a diferentes longitudes de onda.

De forma natural, un cuerpo, como una estrella, que se encuentre a miles de grados de temperatura, emitirá luz visible, que son las ondas electromagnéticas que solemos percibir las personas. – En el visible vemos el universo caliente. El Sol, una estrella a unos 5.500 grados, emite principalmente en el visible. – Continúa explicando -.  Pero en el Universo no hay solo estrellas y planetas. Hay cuerpos muchísimo más calientes y también muchísimo más fríos que las estrellas y los planetas. Estos cuerpos más fríos no emiten luz visible, sino infrarrojos. – Desde mi tesis siempre he tenido una formación en longitudes de onda raras, que los astrofísicos han tardado mucho en poder acceder a ellas, como el infrarrojo lejano, alrededor de las 100 micras, que no se puede observar desde tierra, porque el vapor de agua las absorbe.

Cantoblanco, Madrid, 4 de abril de 2017.

Un bosque de ideas en la nueva concepción de la educación medioambiental

Como en un libro discreto, hoja a hoja, tiempo tras el tiempo, oscuro y cerrado, o limpio y abierto, el bosque acoge al viento como un silbido lento. Pero el viento corre rápido, y del viento nace el fuego, del fuego nace el grito, y tras el grito; el silencio. El bosque arde a voces las noches del incendio.

Este suceso metafórico que se describe, de forma narrativa y con la edulcoración típica de la lírica, no es más que la triste realidad que cada año viven nuestros bosques. Según los datos del Ministerio de Agricultura y Pesca, Alimentación y Medioambiente, en 2016 hubo un total de 8.810 siniestros forestales en España que arrasaron más de 65.000 hectáreas.

Marcos Morales Peláez. Imagen de los bosques de la Sierra de Cazorla.

“¿Cuando el bosque se quema algo tuyo se quema, no?”, nos recordó Carlos Caurín –profesor del Departamento de Didáctica de las Ciencias Experimentales de la Facultad de Magisterio de la Universidad de Valencia– el pasado 21 de marzo,  Día Internacional de los Bosques. El especialista en Educación Medioambiental realizó un guiño al eslogan de hace unos años en la campaña de concienciación frente a los incendios forestales. Según el docente, es importante tener en cuenta este tipo de campañas en celebraciones como la del 21 de marzo,  ya que la  “Educación Ambiental es la esencia de la Educación”. Dentro de esta concepción, Caurín explicó: “Si educamos en el respeto por la biodiversidad, educamos contra el racismo; si educamos en el respeto por el medio ambiente con argumentos fundamentados y contrastados, estamos educando una sociedad más sostenible, crítica y solidaria”.

Marcos Morales Peláez. El profesor Antonio José Morales impartiendo clase en una salida de campo.

El mismo modelo de educación ambiental defendió Antonio José Morales –profesor del departamento de Didáctica de las Ciencias Sociales de la Facultad de Magisterio de la Universidad de Valencia–, según el cual “la Educación Ambiental ayuda a percibir los bosques como lo que son realmente: el exponente más claro de la evolución del  ecosistema a un estadío de situación clímax desde un punto de vista ecológico”.

Antonio José Morales es, además, coordinador de EcoRiba, un proyecto de dinamización local sostenible. El especialista confesó: “los proyectos locales que intentan poner en valor nuestro paisaje, como es el caso de EcoRiba,  y de forma específica los bosques locales a través de la coordinación del Proyecto de Apadrinamiento de los Bosques de la Ribera del  Túria en la localidad de Riba-roja, y  mediante otras iniciativas como puedan ser  dando visibilidad al arbolado monumental del municipio, contribuyen a arraigar las conductas de protección a realidades concretas”.

Por último, los dos profesores destacaron la importancia de la figura del mediador ambiental como protector de los bosques, ya que, esta figura “no sólo dirime asuntos ambientales, sino también sociales”,  apuntó Carlos Caurín. Según el experto “la mediación ambiental se basa en el desarrollo sostenible, el equilibrio con el medio”, una idea que aún hoy parece lejana, pero que poco a poco empieza a calar en nuestra sociedad con celebraciones como la del 21 de marzo.

Marcos Morales Peláez. Imagen de las actividades de divulgación del proyecto EcoRiba.

Marcos Morales Peláez. Alumno del Máster en Historia de la Ciencia y Comunicación Científica.

La Ciudad de las Artes y las Ciencias es referencia internacional en la divulgación científica de excelencia

Imagen por http://www.cac.es/es/home.html

El arte con su encanto para desconectar la mente de lo monótono, la ciencia acortando la distancia entre lo conocido y lo desconocido; y en su afán por conectar al mundo con sus descubrimientos. La Ciudad de las Artes y las Ciencias a través de su plan estratégico, convenios, la adhesión al proyecto Hipatia, ciclos de conferencias y los consejos con expertos, se posiciona como ese referente tanto nacional como internacional en la divulgación científica de excelencia.

Plan estratégico de la Ciutat de les Arts i les Ciències

En el plan estratégico de la Ciutat de les Arts i les Ciències (CACSA) 2016-2019, publicado en el portal de transparencia en www.cac.es, se remarca el objetivo de la divulgación científica precisa y las diferentes iniciativas para llevarlo a cabo y mejorarlo. Una de las acciones principales, en este sentido, es el contacto permanente que se establece con las cinco universidades de la Comunitat Valenciana. Para garantizarlo se han firmado convenios marco de colaboración con todas ellas para el fomento de la docencia, la investigación y la cultura.

Convenios marco de colaboración con las universidades

Nuria Toledo del Departamento de Dirección de Contenido de (CACSA), afirma que la universidad necesita un eco como entidad investigadora y el museo estar a la vanguardia de las innovaciones en el campo de la ciencia, por lo tanto, los objetivos se complementan. Entre los objetivos del sistema universitario se encuentra impulsar la productividad científica, la transferencia de conocimientos, el desarrollo tecnológico y la innovación, en todas las ramas del saber, mediante la estancia de estudiantes universitarios en CACSA a través de un programa de cooperación interactiva.

En 1999 se firmó el primer convenio con la Universitat de València, Estudi General (UVEG), actualmente en renovación e implementación de algunas mejoras. En 2014 se inició la colaboración con la Universitat Politècnica de València (UPV), mientras que es en el pasado año cuando se firman los convenios marco con la Universitat Jaume I de Castelló (UJI), la Universidad de Alicante (UA) y finalmente la Universidad Miguel Hernández de Elche (UMH).

Entre las modalidades de colaboración se encuentran: la cooperación en programas de investigación y desarrollo, a realizar entre los institutos y/o centros de las universidades y CACSA; de igual forma el intercambio de personal por tiempo limitado, cuando la índole del trabajo así lo requiera.

“Quería realizar prácticas en una institución reconocida para saber cómo se gestionan los materiales divulgativos a gran escala”

Marcos Morales Peláez.

El estudiante del máster Historia de la Ciencia y Comunicación Científica de la UVEG, Marcos Morales Peláez quien actualmente realiza sus prácticas de Periodismo Científico en CACSA, describe la experiencia como enriquecedora: “La verdad es que en estas prácticas he podido aplicar toda la teoría aprendida durante las asignaturas del máster”.  Agrega que se han cumplido sus expectativas completamente. Morales explica que las prácticas han consistido en una parte teórica (formación mediante libros de museología), aprendizaje (asistencia a talleres y películas) y práctica (donde se aplica lo aprendido en las otras dos partes) y concluye diciendo: “Sin duda les recomendaría a otros estudiantes realizar sus prácticas allí, ya que resulta un espacio ideal para todo aquel/aquella que quiera formarse en materia divulgativa”.

El proyecto Hipatia

“Defiende tu derecho a pensar, porque incluso pensar de manera errónea es mejor que no pensar”

Hipatia de Alejandría.

El bien denominado proyecto, recibe su nombre en honor a quien se considera históricamente la primera mujer en hacer significativos aportes al desarrollo de las matemáticas; y la primera mujer científica en la historia. En principio fue una iniciativa para el desarrollo de las bibliotecas en los ámbitos educativos no universitario, el objetivo primordial consistió en el fomento de la lectura y la consulta bibliográfica en cualquier materia. El proyecto europeo Hipatia ha evolucionado conforme a la necesidad de los tiempos y está dirigido a promover las vocaciones científico-tecnológicas en las adolescentes; así como a visualizar la figura de la mujer en el mundo de la ciencia y sus instituciones, va a permitir divulgar ciencia desde la perspectiva del género.

Los ciclos de conferencias

Promover la pasión por la ciencia, aproximarse desde el rigor a temas de la máxima actualidad científica con la colaboración de algunos de sus principales protagonistas, y conocer de primera mano algunos de los proyectos de investigación más potentes que están llevándose a cabo hoy en día en la Comunitat Valenciana, son los objetivos de los ciclos de conferencias: “Un comunitat amb ciencia”, “Astronomía” y  “A ciencia cierta”. Por dichos ciclos han pasado algunos de los divulgadores científicos e investigadores más relevantes del panorama internacional: Juan Ignacio Cirac, Avelino Corma, Joan Bisquert, José Manuel Mulet, Lyn Margullis, Sydney Brenner, Ana Lluch, Pilar Mateo, Sylvia Earle y John Barrow.

Los consejos con expertos

El comité de expertos de CACSA, presidido por el profesor Santiago Grisolía y formado por un prestigioso equipo multidisciplinar relacionado con la ciencia y la tecnología; pretende también impulsar la ciencia, la tecnología e innovación, promover su integración y acercamiento a la sociedad y dar respuesta a las necesidades de los centros de divulgación científica.

Y por último, CACSA cuenta con un consejo de Niños de 10 a 12 años, basado en el proyecto pedagógico de Francesco Tonucci “La cittá dei bambini”, desde el que se proyecta la mirada del niño sobre la realidad del museo para cambiar desde esta perspectiva aquellas cosas que pueden mejorar como organización.

Imagen por http://www.cac.es/es/home.HTML

Todos estos elementos refuerzan su labor en divulgación científica, así como su búsqueda de la excelencia en este terreno.

No cabe duda de que el arte es ese pincel que colorea la ciencia en los museos; haciéndola más atractiva para quienes la ven como un asunto de aquellos que trabajan en los laboratorios o en las aulas. En la Ciudad de las Artes y las Ciencias encontraras respuestas a esos maravillosos fenómenos que ocurren día a día a nuestro alrededor, de una manera tan sencilla que te resultará artística.

 

Carolin E. Batista.

Ricardo Moreno Castillo: “El aprendizaje a veces es divertido y a veces no, pero la meta es el saber, no la diversión”.

Ricardo Moreno Castillo analiza los problemas que acosan al sistema educativo español y atribuye gran parte de la culpa del desastre actual a la influencia perniciosa de la pedagogía. Licenciado en Matemáticas y en Filosofía y, desde 1975, catedrático de instituto. Actualmente está jubilado pero ha ejercido en el instituto Gregorio Marañón de Madrid y en la Facultad de Matemáticas de la Universidad Complutense como profesor asociado. Ha publicado numerosos artículos en revistas especializadas, es autor de varios libros como “Panfleto antipedagógico” (2006) o “La conjura de los ignorantes. De cómo los pedagogos han destruido la enseñanza” (2016).

 

Ricardo Moreno Castillo

En sus libros y textos habla de la educación española y de los problemas que ésta sufre, analizando las causas. ¿Cómo queda ese análisis si lo enfocamos aún más a la enseñanza de las ciencias?

La situación de la enseñanza de las ciencias es tan desastrosa como la de las humanidades. Hoy hay que enseñar en dos años las matemáticas que en el sistema anterior se enseñaban en cuatro a estudiantes que llegan a los dieciséis años con menos conocimientos y menos hábito de trabajo que los que traían antes los de catorce. En algunas carreras de ciencias e ingenierías ha habido que implantar un curso cero donde se explican cosas que antes sabían estudiantes de octavo de EGB.

Usted ha sido catedrático de matemáticas. ¿Considera que el nivel de matemáticas que tienen los alumnos españoles actuales es el mismo que el que tenían hace 10 años? ¿O 20 años? ¿O 30?

El nivel es considerablemente peor. Hace treinta años (y a alumnos de familias de origen marinero o labrador, sin ningún ambiente intelectual en sus casas) se les demostraba el teorema fundamental del cálculo, y resolvían integrales racionales cuyo denominador tenía grado tres o cuatro. Si se pusiera estos problemas hoy día a alumnos de ingeniería, se amotinarían. Y de geometría clásica elemental no tienen ni idea.

Si tuviera que elaborar un catálogo de 5 cualidades que debe tener un maestro o profesor para ser un BUEN maestro o profesor, ¿cuáles serían estas cualidades?

  1. Amar la materia que se imparte y seguir aprendiendo. Solo quien ama el saber puede contagiarlo, y solo quien sigue siendo un estudiante puede ponerse en el punto de vista del estudiante. Y a ser posible amar el saber en general. Un profesor culto y leído siempre puede relacionar su materia con las demás y dar una panorámica más global que el profesor que solo domina su disciplina.
  1. Tener buena memoria: recordar lo que molestaba de los malos profesores para no repetirlo y lo que gustaba de los buenos para imitarlos.
  1. En matemáticas (y en realidad en cualquier ciencia) no hay teoría, por compleja que parezca, que no parta de una idea simple. Hay que rascar hasta dar con la idea para que los alumnos la vean intuitivamente antes de ponerse a hacer cuentas: nunca empezar una clase de espaldas a los alumnos y hablando a la pizarra.
  1. La pizarra ha de ser clara y ordenada. El método correcto de trabajo sería: el profesor explica la demostración mientras la expone en la pizarra, pero los alumnos no copian, solo escuchan. Luego se plantean y se resuelven las dudas. Solo cuando todas las dudas han sido resueltas, los alumnos copian la demostración. De esta manera sus apuntes son limpios y los pueden usar para seguir eventuales explicaciones posteriores.
  1. La cortesía es fundamental: no solo exigirla, también darla. Nunca decir: “tira el chicle”, “sal a la pizarra”, sino: “tira el chicle, por favor”, “sal a la pizarra, por favor”. Y cuando el alumno ha tirado el chicle o ha hecho el problema, decir “muchas gracias”

pizarra clara y ordenada

¿Cree que en las facultades de Magisterio, donde se forma a los futuros maestros, se hace hincapié en algunas de las cualidades que usted atribuye al BUEN maestro?

Creo que no. Más bien se les marea con teorías absurdas que de nada valen a la hora de dar clase.

La formación matemática, o en general científica, que se imparte en las facultades de Magisterio, ¿es suficiente para atender las demandas de una sociedad cada vez más tecnológica?

La formación científica y humanística con la que se sale de las facultades de magisterio es lamentable. Que la sociedad sea más tecnológica no es razón para que no se aprenda la gramática y a escribir bien, a apreciar la buena literatura, la matemática de toda la vida, la historia y las ciencias de la naturaleza. Un maestro ha de ser un gran humanista, ha de saber más matemáticas que cualquier profesor de literatura y más literatura que cualquier profesor de matemáticas. Lo decía muy bien Unamuno (hace casi cien años, lo que demuestra que las tonterías pedagógicas son muy antiguas):

“Lo que necesita el maestro es menos pedagogía, mucha menos pedagogía, y más filosofía, muchas más humanidades. El maestro de primeras letras no puede ser, como no puede ser el padre, un especialista. Hacer de la pedagogía una especialidad es perderse en la técnica pura, en la técnica hueca y vana.”

¿La pedagogía ha cambiado para siempre, de manera irreversible, los conceptos de enseñar y aprender?

La pedagogía ha destrozado la enseñanza, y no sé si para siempre. Pero mucho me temo que revertir el proceso va a ser muy difícil.

¿Por qué muchos pedagogos, padres y sectores de la sociedad tienen tantos problemas con la memoria como método de aprendizaje?

Por qué tienen tantos prejuicios contra la memoria, lo ignoro, pero lo tienen. Supongo que es porque no saben lo que es el conocimiento: es una moneda de dos caras, inteligencia y memoria, y si falta una de ellas falta el conocimiento. Ya en la época de la Enciclopedia tuvieron que salir Voltaire y D’Alembert contra ese prejuicio: La Enciclopedia y los diccionarios sirven para personas ya instruidas, por tanto no sustituye al estudio ni a la memoria. Y Kant incidió en lo mismo: los contenidos del conocimiento sin las estructuras del pensamiento son ciegos, pero las estructuras del pensamiento sin los contenidos del conocimiento están vacías.

Los países en las primeras posiciones del informe PISA son ya países asiáticos (Singapur, Shanghai, Japón, Corea del Sur) donde es patente la importancia de la disciplina, la autoridad docente, el respeto y el esfuerzo. ¿Cómo se analiza esto desde la perspectiva de las pedagogías que abogan por el divertimento como clave del aprendizaje?

Simplemente, el aprendizaje a veces es divertido y a veces no, pero la meta del aprendizaje es el saber, no la diversión. Igual que el oficio del médico consiste en curar a sus enfermos, no divertirlos.

¿Cuál es su opinión sobre la corriente de pensamiento actual que aboga por no mandar deberes a los alumnos?

Las tareas en casa son indispensables. Por mucho que se pueda aprender en el aula, y en efecto en clase se aprende mucho, el estudio y el aprendizaje tienen una parte insoslayable de trabajo a solas y en silencio. Bien es cierto que esto se ha de matizar, porque algunas de las críticas que se han hecho a las tareas escolares son legítimas.

La primera, que llevan mucho tiempo, y el niño no tiene tiempo para jugar y estar con sus compañeros. Esto es verdad en cierta medida. Un profesor no puede poner tareas como si su asignatura fuera la única. La solución está entonces en calcular cuánto tiempo, según su edad, debe razonablemente dedicar un estudiante a sus tareas y dividir ese tiempo por el número de asignaturas. Después, cada profesor ha de poner los deberes que se puedan hacer en el tiempo estipulado. Pero hay otra cosa más grave: hay tareas que no valen para nada y roban muchísimo tiempo: los trabajos de recortar y pegar no tienen nada que ver ni con la investigación ni la creatividad, consumen un montón de tiempo y son completamente inútiles, porque recortando y pegando no se aprende nada.

La segunda, que con las tareas salen ganando los hijos de padres con estudios, que tienen más ayuda en casa. Pues eso se resuelve poniendo deberes que el chaval pueda hacer solo. Por ejemplo en matemáticas, los problemas que podríamos llamar de mantenimiento, como cuentas con fracciones o problemas del sistema métrico decimal. En cuanto al profesor le consta que ya sabe hacerlos, puede ponerle algunos problemas de cuando en cuando para que los olvide y siga ejerciendo la actividad mental. Otra cosa son los problemas menos rutinarios o de idea feliz, que se deben trabajar en clase, donde se pueden discutir los distintos caminos y métodos. Por supuesto que se puede decir cuál de esos problemas se va a hacer en la clase siguiente por si a alguno le apetece darle vueltas a la cabeza, pero no como tarea preceptiva. Lo mismo sucede con la lengua. Una redacción de no más de diez líneas, sobre la última película que se ha visto, o sobre la amistad, o sobre lo que sea, lo puede hacer el estudiante sin ayuda de nadie, y además es más útil y lleva menos tiempo que recortar y pegar. Lo mismo si se trata de memorizar algo. Pongamos que el profesor de historia les ha hablado de un tema. Se trata de que los alumnos escuchen, no de que tomen notas, sino de que aprendan a escuchar. Yo recuerdo muchos cuentos que me contaron de niño y escuchaba sin tomar apuntes. Ahora bien, como un tema de historia exige más rigor que un cuento, terminada la explicación el profesor puede poner en la pizarra un esquema con las ideas y datos más importantes de aquello que ha explicado para que los alumnos lo copien y lo memoricen en casa. Y para memorizar (sea el esquema de una clase de historia o un poema) no se precisa la ayuda de nadie. ¿Y quién debe decidir sobre la cuestión de los deberes?

Lo que es sencillamente delirante es la huelga de deberes planteada por algunas asociaciones de padres. Las cuestiones educativas han de ser discutidas entre adultos, y es un disparate usar a los propios hijos como ariete. Cuando sean mayores y trabajen, ya decidirán cuándo deben hacer huelga y cuándo no, pero no pueden ser manejados de niños, y mucho menos por los propios padres, algunos de los cuales se han portado en este caso con absoluta irresponsabilidad.

Santi Selvi