Antonio Peñalver: «Lo novedoso de este proyecto es que los modelos de predicción económica pueden aplicarse también en medicina con resultados muy interesantes»

El profesor de la UMH participa en un proyecto de investigación, en colaboración con la Universidad de Murcia, denominado Desarrollo y estudio de algoritmos para búsqueda del mejor modelo econométrico en problemas de ciencias de la salud.

Antonio Peñalver, subdirector del Grado en Ingeniería Informática en Tecnologías de la Información de la UMH, lleva ligado a la universidad más de una década, aunque fue el pasado 2018, cuando consiguió su plaza como profesor titular. Además de sus clases a alumnos de grado, la participación en proyectos de investigación es la segunda vía por la que este profesor, nacido en Orihuela (Alicante), desarrolla su carrera profesional. Actualmente lo hace en un equipo multidisciplinar formado por investigadores de la rama sanitaria, otros de estadística y matemáticas y dos de la rama de informática-él es uno de ellos- en un proyecto en el que economía y salud están íntimamente relacionados, financiado por el Ministerio de Economía y Competitividad.  

Los modelos econométricos predicen magnitudes económicas a partir de cambios en las variables del modelo. La subida de un tipo de interés y las modificaciones de esas variables pueden dar al traste con la economía de un país. En ciencias de la salud,  la aplicación de estos modelos, pueden ayudar a una pareja a mejorar sus condiciones fértiles de cara a poder concebir un hijo. Un problema, el de la infertilidad, que afecta en España a unas 800.000 parejas. Actualmente el 3% de los bebés españoles nacen mediante reproducción asistida. Cuando finalice este proyecto, dentro de algo más de año, los profesionales de la salud podrán trabajar con una herramienta que les proporcionará datos precisos para reducir este problema. Se trata de un proyecto innovador, el primero de este tipo que se lleva a cabo en una universidad, que puede ser útil cuando sea posible su aplicación real en hospitales.

El profesor Antonio Peñalver

P. ¿De dónde surgió la idea del proyecto? ¿Hay algún antecedente sobre esta investigación?

R. Hay otros proyectos que aplican modelos econométricos a problemas de salud en aspectos muy puntuales, pero un algoritmo que encuentre el mejor modelo econométrico es novedoso, no se había planteado antes. Es lo que hace diferente a nuestro proyecto y lo que determinó que contáramos con la financiación necesaria.

P. En este proyecto están presentes cuatro aspectos de las ciencias de la salud, vinculados todos ellos a problemas de reproducción humana ¿Por qué los problemas de infertilidad?

R. Porque las personas que han mostrado interés en trabajar con estos modelos han sido profesionales de estas ramas. No es que los algoritmos y técnicas que presentamos y con las que trabajamos solo sirvan para estos problemas, es simplemente porque algunos miembros del equipo habían trabajado previamente en investigaciones similares y estábamos en contacto con algunos equipos de trabajo que desarrollaban sus acciones en esta temática.

P. Cualquier problema de salud latente, ¿podría beneficiarse de los avances de esta investigación?

R. La idea es que, el programa, una vez entrenado, sea capaz de encontrar el mejor modelo que explique datos de cualquier tipo y pueda aplicarse a cualquier problema relacionado con la sanidad, no solo a los relacionados con la infertilidad, claro

P. Se trata de poder ofrecer al paciente un tratamiento personalizado ¿de qué manera?

R. Pretendemos que un investigador, que tiene una base de datos de pacientes, utilice una interfaz de usuario sencilla en la que crea un proyecto. Para darle forma al mismo, sube una tabla con los datos que recoge de cada una de los pacientes, etiqueta cada una de las variables que va a tratar, e incluso puede poner condiciones al modelo, marcando algunas de ellas como obligatorias. Luego el programa recoge toda la información, hace una llamada al equipo que hace los cálculos y, dependiendo del tamaño del problema, esta decide si lo resuelve desde un computador normal o desde un supercomputador. Dependiendo de la complejidad, los resultados pueden estar listos en unas horas o pueden tardar incluso un día. Cuando el programa detecta que ya se ha hecho el trabajo, envía un correo electrónico al investigador para que los consulte y analice.

«El objetivo final es que el profesional de ciencias de la salud tenga una herramienta a la que introduce los datos y ésta le encuentra el mejor modelo a aplicar»

P. ¿Cómo es esa interfaz?

R. “Hemos creado una interfaz de uso sencillo donde pueden introducirse las variables”, usarlas, etiquetarlas y controlarlas según sus necesidades. Una herramienta para el profesional donde puede realizar pruebas. Lo que él observa es una interfaz de usuario gráfica donde puede apreciar qué consecuencias tiene introducir un determinado shock en una de las variables.

Interfaz de usuario. Pantalla de inicio/ Fuente: Antonio Peñalver

Contiene el número de resultados de la aplicación, el número de proyectos de la aplicación; número de modelos de la aplicación; número de usuarios de la aplicación.
Gráfica circular, mostrando los proyectos y los modelos de la aplicación por mes y por año.
Gráfica de barras, mostrando un ranking entre el número de proyectos y el número de modelos.
Tabla con los últimos resultados de los proyectos de la aplicación.

P. ¿Qué supone la introducción de este shock?

R. Muy sencillo. Queremos saber qué le sucede al paciente si se le sube la dosis de antibiótico, ese el shock, el aumento de esta variable. ¿Qué pasa entonces? ¿mejora su presión arterial?- que es otra variable- ¿desciende la temperatura?- otra variable- ¿o sigue todo como hasta ahora? Lo bueno es que se pueden hacer averiguaciones previas a cómo se comportará un cuerpo ante modificaciones en la dosis de un medicamento, por ejemplo. Comprobar cuál será la respuesta del paciente y decidir después si llevar a cabo el tratamiento. El objetivo final es que el profesional de ciencias de la salud tenga una herramienta a la que introduce los datos y ésta le encuentra el mejor modelo a aplicar.

«Esos modelos que se han utilizado tradicionalmente en economía no se le había ocurrido a nadie emplearlos también en medicina. Algo que se lleva haciendo hace más de cincuenta años en el ámbito de la economía puede aplicarse a un contexto diferente»

P. Han necesitado la colaboración de especialistas en supercomputación y de una infraestructura muy concreta ¿Cómo es trabajar con una supercomputadora?

R. Trabajamos con una supercomputadora situada en la Universidad de Murcia, en un centro específico que cuenta con esta infraestructura, aunque la parte de supercomputación es solo una parte del proyecto.En esta investigación se manejan una cantidad de variables muy altas lo cual dificulta la búsqueda del mejor modelo econométrico. Requiere una capacidad de cómputo muy alta, hasta el punto de que un ordenador normal puede no ser capaz de proporcionar una respuesta en un plazo de tiempo determinado. Ahí entra la función de la supercomputación. Al final, “esta máquina no es más que un ordenador que tiene muchos procesadores y es capaz de repartir el trabajo a realizar entre todos ellos, por eso los resultados se obtienen en menor tiempo. Es capaz de probar millones de algoritmos diferentes para encontrar el mejor modelo, la mejor solución a cada uno de los casos”.

P. ¿Qué cantidad de datos y operaciones pueden hacerse al día con ella?

R. La cantidad de operaciones que realiza uno de estos supercomputadores se mide en Mega Instrucciones por Segundo (MIPS) y depende mucho de la naturaleza de la máquina. Pero lo fundamental es el número de procesadores que tiene. Aunque, en realidad, ese aspecto para el equipo no es relevante porque nosotros no innovamos en supercomputación, simplemente lo utilizamos para que haga cálculos a la mayor velocidad posible.

Supercomputador Ben Arabí
Parque Tecnológico de la Universidad de Murcia/Fuente: Gabinete de prensa UMU

P. ¿Cuál es el papel del médico o facultativo en esta cuestión?

R. Sus conocimientos son esenciales para trabajar con todas las variables. Nosotros no somos expertos en medicina y no sabemos qué modelos hay que emplear. El que debe tener una intuición sobre lo que puede afectar o no al paciente es el facultativo. El perfil del especialista al que va dirigido es el de un investigador y no tanto un facultativo de atención primaria. El objetivo final es que, el profesional de ciencias de la salud tenga una herramienta a la que introduce los datos y ésta le encuentra el mejor modelo a aplicar.

«No buscamos una patente de software con la que enriquecernos.
Lo que queremos es que cualquiera que lo necesite lo pueda utilizar
«

P. Todo se basa en la aplicación de modelos econométricos a problemas de salud ¿se podría concluir que son dos aspectos (economía y salud) que no están tan distanciados como pensamos?

R. Para mí, los conceptos son claramente distintos. Lo novedoso de este proyecto es que herramientas similares pueden utilizarse para problemas parecidos. Esos modelos que se han utilizado tradicionalmente en economía no se le había ocurrido a nadie emplearlos también en medicina. Algo que se lleva haciendo hace más de cincuenta años en el ámbito de la economía puede aplicarse a un contexto diferente.

P. ¿El proyecto será aplicable en hospitales con financiación privada o también los integrantes de la Seguridad Social?

R. A cualquiera que esté interesado. Como investigadores lo que nos preocupa es darle difusión al proyecto y no hemos pensado en la aplicación real en ningún centro en concreto. Obviamente, lo que queremos es que cualquiera que lo necesite lo pueda utilizar. No buscamos una patente de software con la que enriquecernos.

Ciencia a contracorriente

Cinco científicos españoles muestran la realidad actual de la investigación y hacia dónde se dirige

Cuesta abajo. El río, demostrando la ley de la gravedad, sigue su camino hacia el mar. 1.332 millones de kilómetros cúbicos de agua lo acogen y disfrazan de océano. Está perdido, las moléculas de agua que antes se agolpaban una al lado de la otra ahora están separadas. No volverán a unirse entre ellas. Sin embargo, las hay luchadoras. Van a contracorriente. No quieren dejarse llevar, se resisten. Algunas lo consiguen. Para otras, la fuerza ha podido con ellas. Aun así, no se dan por vencidas.

Esta es la situación por la que actualmente atraviesa la investigación científica en España, nadando en el sentido contrario al que se le quiere imponer, evitando empujones y tratando de que la corriente no se lleve todo lo conseguido hasta ahora. Corriente que, desde hace unos años, ha ganado velocidad en un cauce cada vez más estrecho y empinado en el que parece no caber más agua. Los científicos españoles, esas moléculas de H2O que no quieren ser arrastradas, trabajan por mejorar un país en el que la gran mayoría de habitantes desconoce cómo, por qué y para qué lo hacen. Su oficio, sin embargo, repercute en beneficio de todos.

Así lo defienden cinco investigadores españoles a los que, a pesar de pertenecer a diferentes campos y trabajar en cuatro comunidades autónomas distintas, muchas de sus experiencias les unen. Desconocían las dificultades a las que tendrían que enfrentarse cuando comenzaban. Más aún que estas fueran a empeorar. Con los años, finalmente, su experiencia les ha enseñado que en el camino hay más piedras de las que hubiesen imaginado. Sus trayectorias, tan distintas y parecidas a la vez, también les han hecho ver que España es un camino adoquinado en el que es difícil caminar sin que el pie tropiece.

Están llenos de ideas, proyectos que permitan que la sociedad española, esa para la que son unos desconocidos, tenga una vida mejor. Son conscientes de que queda mucho trabajo por delante. Esta dificultad, esta enorme roca, no les desmotiva. Cogen fuerzas para intentar moverla. Algunos lo han pasado mejor, otros, peor, pero todos tienen algo que decir. Todos desean enseñar a la sociedad que están ahí para ellos, que necesitan su apoyo y que la única manera de avanzar es hacerlo juntos. No quieren ir cuesta abajo y que el torrente, la tendencia actual, pueda con ellos.

ANA BELÉN ROPERO. LA DIFICULTAD PARA CONSEGUIR PROYECTOS DE INVESTIGACIÓN

Ana Belén Ropero intenta que los españoles aprenden a elegir los alimentos.

La profesora de nutrición de la Universidad Miguel Hernández (UMH) de Elche Ana Belén Ropero Lara (Ibi, Alicante, 1973) sabe lo que es sentirse atascada en el sistema. Tras pasar en el extranjero más de tres años, volvió en 2005 a España. Sin embargo, acabó con un contrato postdoctoral en el mismo grupo de la UMH en el que estuvo realizando su tesis.

Hasta el año 2011, cuando ya sumaba 15 años como investigadora, Ropero estudió el papel de los estrógenos en la regulación de la glucosa en sangre. Con ganas de iniciar su propia línea de investigación e “independizarse” [de su grupo], ese año solicitó financiación para un proyecto en un par de ocasiones. Sin embargo, las duras exigencias que desde entonces rigen la concesión de las ayudas impidieron que así fuera y que, un año más tarde, decidiera dejar completamente la investigación.

Debido a esas circunstancias, sumadas a la influencia de un compañero, su vida dio un giro. Junto a una colega del área de nutrición de la UMH, decidió poner en marcha un proyecto que nada tenía que ver con lo que había hecho hasta el momento: Badali, una base de datos que recoge información nutricional de alimentos e incluye recomendaciones de consumo.

“La sociedad no sabe lo que hacemos, con lo cual los gobernantes tampoco”, sostiene Ropero

Este blog de divulgación científica, en el que se encuentra inmersa actualmente, le hizo darse cuenta del posible origen de algunas de las principales dificultades en la I+D española: “Conforme comencé a meterme en este mundo, me iba dando cuenta de que esos problemas que teníamos en investigación tras las crisis eran porque realmente la sociedad no sabe lo que hacemos, con lo cual los gobernantes tampoco”. De hecho, la también profesora de la UMH asegura que durante su etapa como investigadora no se vio capaz de contar a su madre en qué trabajaba “porque no lo iba a entender”.

Para que esta situación mejore, la ya reconocida divulgadora parece tener claro qué es necesario hacer: “Se tiene que formar a la gente mediante divulgación científica, desde entidades institucionales y sobre temas que ya estén muy afianzados y estudiados”.

LUISA MARÍA BOTELLA. VOCACIÓN PARA MANTENERSE

Luisa María Botella Cubells

Luisa María Botella lleva años investigando la enfermedad rara HHT.

El de Luisa María Botella (Valencia, 1959), científica del Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas (CIB-CSIC), es el ejemplo de que la vocación lo puede [casi] todo. Por recomendación de sus padres, pues ella quería ser docente, Botella decidió estudiar la carrera de biología, “aunque por aquel entonces las salidas eran incluso más oscuras que ahora”, reconoce. Ahí conoció la genética, momento en que se dio cuenta de que eso era lo que quería para su vida.

Tras varios años dedicada a la investigación básica con insectos, y durante los cuales se vio sin dinero y sin proyecto en una ocasión [no sería la última], la bióloga descubrió su verdadera pasión: la Telangiectasia Hemorrágica Hereditaria (HHT) o síndrome de Rendu-Osler-Weber, una enfermedad rara que hasta el año 2001 no había sido estudiada. Esta circunstancia no era nada excepcional, pues como Botella recuerda “por aquella época había poca financiación para su estudio [el de las enfermedades raras]”.

Debido a la crisis, la investigadora se vio por segunda vez sin financiación y sin proyecto

Después de mucha insistencia, pues la investigadora no podía dejar de pensar en los pacientes de HHT, consiguió reunir todo lo necesario para investigar la enfermedad: el dinero, el proyecto, el personal, los pacientes y los médicos. Tal y como asegura, esto supuso “la época dorada del laboratorio”. No obstante, la crisis hizo estragos en todo lo conseguido hasta la fecha y, en el año 2011, se vio de nuevo sin financiación, sin un proyecto de investigación y con tan solo una compañera en el laboratorio.

Su vocación, ya claramente encaminada hacia el estudio de esta enfermedad, no le dejó tirar la toalla: Botella se presentó en 2012 al concurso de televisión Atrapa un millón, emitido por Antena3, para conseguir dinero y donarlo a la Asociación de Pacientes de HHT, creada en 2005. Los 15.000 € que logró ganar supusieron, tal y como asegura, “la semilla para hacer más cosas”.

Y así fue, pues poco más tarde la bióloga participó en una campaña de difusión de HHT con los medios, que tuvo como resultado una serie de “donaciones solidarias”. El laboratorio de Botella, quien considera de vital importancia hacer llegar la información a la sociedad para el buen funcionamiento de la investigación, comenzó a ser el de antes.

DIEGO GUTIÉRREZ. EL EJEMPLO DE QUE ESPAÑA NO SIGUE EL RITMO A EUROPA

Diego Gutiérrez es experto en realidad virtual.

Películas como Parque Jurásico (1993) o Toy Story (1995), la primera creada por completo con efectos digitales, despertaron el interés de Diego Gutiérrez Pérez (Zaragoza, 1970) por la informática gráfica. Años más tarde, Disney, una de las productoras de la cinta sobre juguetes animados, reclama sus servicios.

El investigador de la Universidad de Zaragoza ha conseguido, además, llamar la atención de otras importantes compañías e instituciones estadounidenses como Adobe y la NASA, la cual se interesó por una cámara que el grupo de Gutiérrez creó en 2013, en colaboración con el Instituto Tecnológico de Massachusetts (MIT), para conocer la estructura interna de nuestro satélite. “Es tan rápida que se puede ver luz en movimiento. La NASA pensó implementar esta tecnología para mapear las cuevas de la luna en lugar de mandar un astronauta”, asegura Gutiérrez, quien también imparte clases en la institución aragonesa.

“Ningún político ha apostado por la investigación, nunca”, sentencia Gutiérrez

Un poco más cerca, en Europa, el trabajo del investigador tampoco ha pasado inadvertido: el pasado año el Consejo Europeo de Investigación (ERC) le concedió un proyecto de 1,7 millones de euros para estudiar los posibles vínculos entre el mundo físico de la luz y la forma en que nuestro cerebro interpreta las imágenes. Cuando nos acercamos más en el mapa, sin embargo, la situación cambia. “Esta es una cantidad de dinero que está muy por encima de lo que consigues en España. Todos tenemos que hacer malabares con el dinero que podemos conseguir aquí. Cada vez está más difícil y ningún político ha apostado por la investigación. Nunca. En Europa es diferente”, señala el profesor.

A pesar de las condiciones actuales en las que lamenta se encuentra la I+D+i en nuestro país, donde cree que hace falta «promover la buena investigación» e “inspirar a la sociedad” para que estudie carreras científicas y tecnológicas, Diego Gutiérrez ha rechazado propuestas para irse al extranjero. “No es tan extraño. No todo el mundo quiere irse. Hay gente que sí y me parece muy bien. La pena es la que quiere quedarse y se ve obligada a irse porque aquí no hay nada. Hay muchos que tomamos la decisión de quedarnos porque valoramos muchas otras cosas. Cualquier decisión es perfectamente válida y respetable”, defiende el zaragozano.

MARÍA BLASCO. LA IMPORTANCIA DE ESQUIVAR OBSTÁCULOS Y DESPERTAR VOCACIONES

María Blasco es una de las pocas mujeres que dirigen un centro de investigación español. /CNIO

Confía en que la inmunoterapia, a la que hasta hace poco “no se le había prestado mucha atención”, sea la alternativa del futuro para combatir el cáncer. No lo afirma cualquiera, pues actualmente ostenta el cargo de directora del Centro Nacional de Investigaciones Oncológicas (CNIO). Sin embargo, el suyo tampoco ha sido un camino fácil, debido a “las dificultades, barreras y sesgos” a los que asegura que han de enfrentarse las mujeres a lo largo de su vida. Aun así, María Blasco Marhuenda (Alicante, 1965) ha conseguido escalar por la pirámide laboral y demostrar que hay estereotipos que no siempre resultan ser ciertos: “Cuando pensamos en científicos, pensamos en hombres, sin embargo, la ciencia está hecha mayoritariamente por mujeres”, afirma la investigadora.

“Ahora es más difícil que hace una década atraer talento o encontrar financiación”, asegura Blasco

Por primera vez desde que Blasco volvió de su estancia postdoctoral en Nueva York en 1997, su grupo ha sufrido una disminución de tamaño, lo cual ha afectado al número de proyectos que pueden realizar. “Ahora es más difícil que hace una década atraer talento o encontrar financiación, nos afectan unas políticas muy restrictivas de contratación de personal que nos hacen ser menos competitivos. Esto es una indicación de lo mal que está la situación”, señala la directora del CNIO, quien en 2014 formó parte de la primera Selección Española de Ciencia, elaborada por la revista QUO, junto a investigadores de la talla de Juan Luis Arsuaga o Margarita Salas.

No obstante, la científica se muestra optimista y está convencida de que España es un país que “importa en el mundo de la investigación”. Además, Blasco confía en el potencial de la divulgación científica para lograr un acercamiento entre la población y los investigadores. “Ya no solo es importante lo que investigamos, sino que lo comuniquemos de forma efectiva, que hagamos partícipe a la sociedad de nuestro trabajo”. De esta forma, tal y como afirma, se pueden “tender puentes para formar, informar y despertar vocaciones”.

Para conseguir tal propósito, la investigadora sugiere varias medidas: “Lo primero que habría que hacer es mejorar la educación científica. Algo que también ayudaría sería aumentar los espacios dedicados a la ciencia en los medios de comunicación. Por nuestra parte, investigadores y centros de investigación debemos abrirnos a la sociedad en la medida de lo posible.

ALBERTO RUIZ. LA DEDICACIÓN PARA LOGRAR OBJETIVOS

Alberto Ruiz es catedrático en la Universidad de Cantabria.

Dos años más tarde, en 2016, nos encontramos con otro de los elegidos para formar parte de la Selección Española de Ciencia. Alberto Ruiz Jimeno (Logroño, 1952), catedrático de Física Atómica, Molecular y Nuclear de la Universidad de Cantabriacolabora con el que califica como “posible centro de referencia mundial en investigación científica”: la Organización Europea para la Investigación Nuclear (CERN). 

Todos y cada uno de los logros que acumula le han enseñado que trabajar duro tiene recompensa. “Los problemas se van superando con la dedicación y la perseverancia, nunca hay que rendirse”, asegura el investigador. De hecho, reconoce que llegar a su posición actual no ha sido una tarea fácil, sino fruto de su gran empeño. “He tenido que trabajar con mucho tesón y a la vez entusiasmo, porque siempre he creído en lo que hacía. Lograr un puesto permanente en la universidad era muy difícil cuando yo terminé el doctorado, como lo es ahora mismo, pero finalmente llegó”, afirma el también coordinador de la Red Temática Nacional de Futuros Aceleradores.

Ruiz opina que el principal problema en España es que «se dedica muy poco presupuesto a I+D”

Recientemente declarado el investigador español más citado, el catedrático aparece en más de 1.000 artículos científicos. Su larga trayectoria y sus amplias colaboraciones con algunos de los centros de investigación más importantes del mundo, le han hecho tener una visión muy definida de la ciencia en nuestro país: “Ha avanzado muchísimo, gracias al interés de los propios científicos, su internacionalización y su dedicación. No obstante, el problema que tenemos en España es que se dedica muy poco presupuesto a I+D, sobre todo en los niveles más altos del Gobierno”.

Igualmente, el físico lamenta que los gobernantes no tengan “una conciencia clara de la importancia de la investigación científica, tanto básica como aplicada”, lo cual considera un impedimento para lograr estar “en primera línea de los países industrializados y avanzados”. En su opinión, “un Ministerio de Ciencia sería muy aconsejable”, aunque añade que “no es suficiente con tener un Ministerio, sino que la I+D se considere realmente como inversión y no como gasto”.


Las cinco piedras que, según los investigadores entrevistados, dificultan el viaje por la senda de la investigación española:

1. Disminución de los presupuestos para I+D.

El Proyecto de Presupuestos Generales del Estado para 2017, presentado el pasado 4 de abril a las Cortes Generales y aprobados por el Congreso de los Diputados el 31 de mayo, destina un total de 621,9 millones de euros a investigación científica, 105 millones menos que hace tan solo diez años. Además, estos han sufrido un descenso constante desde 2009 hasta 2016, año en que se vuelven a incrementar en un 5 %.

View post on imgur.com

2. Visión cortoplacista de la investigación.

En España, los proyectos de investigación no exceden de los tres años para su ejecución, tiempo que los científicos consideran escaso para cumplir con todos los objetivos exigidos. Como ejemplo, las “Consolidator Grant” del Consejo Europeo de Investigación (ERC), ayuda de excelencia obtenida por el investigador Diego Gutiérrez, pueden extenderse durante cinco años.

3. Ausencia de un Ministerio de Ciencia y nula formación científica de los gobernantes.

Desde 1966 hasta 2011, salvo el periodo 1996-2000, la I+D+i estuvo gestionada desde un ministerio cuya denominación hacía alusión expresa a la ciencia, la investigación, la innovación o la tecnología. Con el inicio del primer gobierno de Mariano Rajoy Brey en 2011, y hasta la actualidad, la gestión de la investigación ha corrido a cargo del economista Luis de Guindos a través del Ministerio de Economía y Competitividad, el cual pasa a llamarse desde 2016 Ministerio de Economía, Industria y Competitividad.

View post on imgur.com

4. Sociedad con una cultura científica pobre.

Aunque en la VIII Encuesta de Percepción Social de la Ciencia, publicada por la Fundación Española para la Ciencia y la Tecnología en 2017, se refleja un mayor conocimiento científico y tecnológico por parte de la sociedad española, con respecto a la encuesta de 2015, un porcentaje importante aún no tiene claras ciertas cuestiones: un 46,7 % de los encuestados afirmó que los antibióticos curan infecciones causadas tanto por bacterias como por virus, en lugar de únicamente por bacterias; y un 23,7 % aseguró que el Sol gira alrededor de La Tierra, y no al contrario.

View post on imgur.com

5. Demasiados requisitos para la solicitud de un proyecto de investigación.

View post on imgur.com

El célebre divulgador científico Carl Sagan dijo una vez: “Vivimos en una sociedad absolutamente dependiente de la ciencia y la tecnología y, sin embargo, la hemos organizado inteligentemente para que casi nadie las entienda”. Estos cinco investigadores, con la fuerza que encuentran en su vocación, seguirán luchando por hacerse entender y por un país que conozca y valore su esfuerzo. Un país donde la corriente no les arrastre, sino les impulse.