«Mi trabajo como científica es divertidísimo. Me levanto cada día con ganas preguntándome qué es lo que voy a hacer hoy»

La bióloga Patricia Boya es una de las mayores expertas de España en autofagia, una función del organismo que permite desechar y reciclar basura celular.

Miguel Ángel Alegre

Patricia Boya, investigadora del Consejo Superior de Investigaciones Científicas (CSIC) y presidenta de la Sociedad Española de Autofagia (SEFAGIA).

Patricia Boya (Valladolid, 1971) es presidenta de la Sociedad Española de Autofagia (SEFAGIA), doctora en Biología por la Universidad de Navarra e investigadora del Centro de Investigaciones Biológicas Margarita Salas (CIB) del Consejo Superior de Investigaciones Científicas (CSIC). SEFAGIA es una organización científica que promueve la investigación sobre la autofagia en España y que tiene como objetivo fortalecer la competitividad de los grupos españoles interesados en la autofagia e impulsar la excelencia de la investigación básica y traslacional. Nos encontramos en el vestíbulo del Hotel Barceló V Centenario de Cáceres, donde se celebró del 4 al 6 de marzo el congreso SEFAGIA en su edición del año 2020. Hablamos de autofagia, de su carrera científica, de su día a día como investigadora y de cómo la ciencia ha estado presente desde los primeros días de su vida.

P: ¿De dónde proviene su vocación como científica?

R: Mi padre es físico teórico y siempre he visto la ciencia en casa. Pero concretamente, mi inclinación por la biología me la inculcó una profesora que tuve en el instituto en 2º de B.U.P. Me abrió los ojos ante las posibilidades que albergaba este campo para conocerse a uno mismo, que es lo que realmente implica saber el funcionamiento de tus células. Me acuerdo que fue porque nos mandó en clase un trabajo en el que teníamos que comparar los distintos tipos de animales: por ejemplo, las esponjas, los gusanos… Era una tabla grande donde apuntamos las diferencias entre sus aparatos y sistemas. El hecho de ser capaz de ver aquello de un solo vistazo y de cómo iban evolucionando los órganos hasta llegar a nosotros me pareció fascinante. Eso fue con 16 años y todavía sigo interesada en descubrir más y más sobre cómo funcionan nuestras células para ser lo que somos.

P: ¿Cómo describiría su día a día en el laboratorio?

R: Mi trabajo es divertidísimo. Cada día cuando me levanto me pregunto a mí misma: “¿Qué voy a hacer hoy?”, y siempre tengo varias opciones muy distintas. Puedo leer un artículo para entender un método nuevo, escribir el último resultado científico que hemos encontrado y ponerlo en contexto de lo que se sabe, hablar con mis estudiantes acerca de nuestros últimos descubrimientos, pensar cuál es el siguiente paso para avanzar en nuestra investigación y llegar a descifrar completamente el proceso que estamos estudiando… Aunque a veces tengo que hacer cosas tan aburridas como rellenar papeles, desgraciadamente tengo que rellenar un montón.

P: Usted investiga sobre el proceso de autofagia, ¿cuál es la mejor definición para que todo el mundo pueda hacerse una idea de lo que es?

R: Es una forma de eliminar la “basura” de tus células. Es un sistema de limpieza, pero también de reciclaje. Cuando se degrada esa basura, los materiales que se obtienen pueden ser utilizados para realizar otras funciones. Por ejemplo, yo tengo una silla vieja que ya no me sirve porque está rota o porque no me gusta. Lo que puedo hacer es coger esa silla y sacar de ella trozos de madera para hacerme una estantería nueva. Eso es lo que hace la autofagia con los componentes celulares.

«La autofagia es una forma que tienen las células de eliminar su “basura”. Es un sistema de limpieza, pero también de reciclaje. Los materiales que se obtienen pueden ser utilizados para realizar otras funciones.»

P: ¿Cuándo surge el interés en el mundo de la ciencia por la investigación en autofagia?

R: Aunque la autofagia se conoce desde hace más de 50 años, su interés creció mucho a raíz del descubrimiento en los años 90 de los genes que regulan el proceso, los genes ATGs. Con el conocimiento de estos genes se podía manipular la autofagia y entender qué sucedía cuando no funcionaba bien. Ahí se comprendió que la autofagia era esencial para muchísimas de las funciones de nuestras células y tejidos.

P: ¿Por qué es importante la investigación en autofagia?

R: Todas nuestras células necesitan de este sistema para mantenerse limpias. Cuando este sistema de reciclaje no funciona bien, se acumula basura en las células. Un ejemplo sencillo, cuando una célula se divide en dos, puede repartir esa basura entre sus células hijas a mitad y mitad. Pero en las células que no se dividen, como las neuronas o las células musculares, la basura se va a acumulando a lo largo de toda su vida y si el proceso de autofagia no funciona correctamente puede provocar alteraciones en la célula. La investigación en autofagia nos va a permitir entender este mecanismo, que ya de por sí es muy interesante, y buscar estrategias para modularla en aquellos casos en los que no se desempeña como es debido.

P: ¿Cuáles son las aplicaciones de la investigación en autofagia?

R: Un caso prototípico son las enfermedades neurodegenerativas. En estas enfermedades se acumulan tóxicos en las neuronas. El hecho de aumentar la autofagia en ellas permite que se elimine y se recicle ese material tóxico. Nos estamos enfocando en terapias basadas en la inducción de autofagia para tratar estas y otras patologías. Además, la autofagia no sólo tiene aplicaciones en enfermedades, sino también en otras áreas como la biotecnología o la biología vegetal. Todas las células utilizan la autofagia, por lo que hay muchas posibilidades de que sirva para mejorar y resolver retos en diversos sectores.

«El tratamiento de las enfermedades neurodegenerativas es una de las aplicaciones de la investigación en autofagia. Además, como todas las células utilizan la autofagia, hay muchas posibilidades de que sirva para resolver otros retos»

P: Ha publicado papers en los que explica la relación de la autofagia con el cáncer y enfermedades de la retina.

R: El cáncer es complicado y hay que tener mucho cuidado porque sospechamos que dependiendo del estadio en el que se encuentre la enfermedad, la autofagia puede ser beneficiosa o perjudicial. Aun así, hay muchas investigaciones dirigidas a entender la autofagia en los procesos tumorales por si se pudiese utilizar para diseñar tratamientos antitumorales.

En cuanto a las enfermedades de la retina, en mi equipo trabajamos sobre todo con el sistema nervioso, y en él nos hemos centrado en la visión. Queremos entender el papel de la autofagia en el funcionamiento de nuestras neuronas del ojo y por qué la autofagia es buena para la diferenciación neuronal. Cuando se está formando el sistema nervioso, se parte de un neuroblasto, que es una célula que se divide durante el período embrionario. Del neuroblasto se forma la neurona a través de un cambio de metabolismo y de morfología. Una neurona que ya no se va a dividir más y tiene su axón, sus dendritas… Hemos descubierto que para que eso ocurra se necesita que haya mucha autofagia en un momento determinado. Si todo esto falla, no se forma la neurona. Las alteraciones de la autofagia están asociadas a enfermedades de pérdida de visión, como la retinitis pigmentosa o el glaucoma. En el caso del glaucoma, es una enfermedad asociada a la edad.

P: ¿Cómo afecta el envejecimiento al proceso de autofagia?

R: Cuando se hacen viejas nuestras células, sus sistemas de autofagia funcionan peor. Creemos que estrategias que aumentan esa autofagia pueden ayudar a mantener nuestras células más jóvenes.

P: ¿Qué métodos y técnicas suelen seguirse en un laboratorio de investigación en autofagia?

R: Trabajamos con células, tejidos y animales. Utilizamos ratones modificados genéticamente que tienen fluorocromos, unas moléculas fluorescentes que nos permiten observar al microscopio el proceso de autofagia. O empleamos células o tejidos que no tienen alguno de los genes de la autofagia, por lo que ésta no funciona bien y observamos las consecuencias.

P: ¿Cuáles son los trabajos de los que está más orgullosa de toda su carrera científica?

R: Son dos. El primero cambió por completo el paradigma de lo que se conocía en el campo de la autofagia. Cuando yo comencé a trabajar en autofagia, cuando se descubrieron sus genes, se pensaba que era un proceso asociado a la muerte de las células. Ese era el dogma. Ahora resulta bastante obvio que protege a la célula. Por aquellos tiempos no teníamos definidos los métodos más eficaces para estudiar la autofagia. Lo que hacíamos era observar las células al microscopio. Éstas tenían muchos autofagosomas, la característica principal de la autofagia, y se morían. Los autofagosomas son los orgánulos celulares que actúan a modo de bolsas de basura. En ellos, las células almacenan el material que quieren degradar y reciclar y luego vierten lo que serían las tijeras: las enzimas que rompen y procesan todos esos residuos. Estuve bastante tiempo intentando entender este proceso de muerte celular induciéndolo en las células, quitándoles los nutrientes y tratándolas con fármacos. Todo ello resultaba en su muerte, pero si inhibía el proceso de autofagia morían todavía más. Fue en la Gordon Conference en Estados Unidos, el primer congreso que hubo de autofagia, donde, al fijarme también en lo que hacían los otros investigadores, até cabos y me di cuenta de que lo que probablemente estuviera ocurriendo es que las células utilizasen la autofagia para sobrevivir. Justo al contrario de lo que se creía. La autofagia era un sistema protector de las células, y no un tipo de muerte celular.

«Cuando comencé a trabajar en autofagia, se pensaba que era un tipo de muerte celular. Pero investigando descubrí que era justo al contrario, la autofagia es un sistema protector de las células»

P: ¿Y el segundo?

R: Fue el descubrimiento del papel de la autofagia en el cambio no sólo morfológico sino también metabólico en la diferenciación neuronal. Ya lo he comentado antes, pero entrando más en detalle, esa autofagia en concreto es selectiva, eliminando las mitocondrias y recibe el nombre de mitofagia. Las mitocondrias son los orgánulos de nuestras células que producen energía de forma muy eficiente. Si no se tienen estos orgánulos, la energía se obtiene por la vía de la glicolisis, que es mucho más rápida, aunque menos eficaz. Pero tiene una ventaja, y es que permite obtener materiales adicionales para generar masa en la biosíntesis. Este cambio metabólico permite a las neuronas en ciernes poder crecer y generar su axón. Luego esas neuronas vuelven a utilizar las mitocondrias con normalidad. Una situación parecida ocurre en las células tumorales, y también en los macrófagos y linfocitos T cuando se activa la respuesta inmune. Son circunstancias en las que las células necesitan obtener energía de la forma más inmediata posible.

P: ¿Cómo surgió SEFAGIA?

R: Llevo trabajando en autofagia desde hace bastante tiempo. Al volver a España en 2004 (NdE: Patricia Boya cuenta en su curriculum con dos estancias internacionales en el Centro Nacional para la Investigación Científica, CNRS, de París, Francia y la Universidad de Cambridge, Inglaterra) era una de las pocas personas que había estado estudiando este proceso. Al ser un campo muy nuevo, había mucha gente interesada en aprender sobre ello y nos contactaron para colaborar. Al principio, yo ayudé a muchos grupos españoles de investigación a montar las técnicas y las metodologías pertinentes. José Luis Crespo, del CSIC en Sevilla, que también había trabajado en autofagia, fue quien propuso la idea de reunir a todos los científicos de España que nos dedicábamos a este campo. El objetivo era tener un marco que nos permitiera apoyarnos y aprender los unos de los otros para mejorar la investigación en autofagia en España. La primera vez fue en el año 2013 en Madrid, en mi centro, el CIB. A raíz de ahí fuimos creciendo poco a poco. Primero hacíamos asambleas anuales. En el curso 2015-2016 pedimos una beca del Ministerio para Redes de Excelencia y nos la concedieron. Con ella pudimos financiar nuestros proyectos y organizar congresos. En 2017, cuando se nos acabó la subvención, nos planteamos cómo podíamos seguir con todo esto y decidimos fundar la sociedad.

P: ¿Qué experiencias aportan congresos como el que se está celebrando ahora mismo?

R: Son esenciales. Primero porque ves lo que hacen los demás y aprendes de sus descubrimientos. Luego porque puedes darte cuenta de metodologías o formas de trabajo de tus compañeros que pueden complementar tu propia investigación. Lo maravilloso de los congresos es tener un contacto directo con los otros investigadores. Puedes acercarte a ellos y preguntarles si te pueden ayudar con su metodología a solucionar un problema que tienes con tus experimentos o si creen que sus modelos se pueden aplicar al proceso que estás estudiando. Los congresos son una de las herramientas más útiles para conseguir los propósitos con los que nació SEFAGIA, son lugares ideales para aprender, ayudarnos y en los que surgen nuevas colaboraciones.

P: ¿Cuál es su opinión sobre el sistema científico?

R: Los científicos no estamos conformes. Para investigar se necesitan recursos y estos son muy limitados, tanto a nivel económico como humano. Cada vez tenemos más obstáculos para poder trabajar. Hay que hacer más papeles, permisos, gestiones… Calculo que de todo el tiempo que estoy trabajando, sólo un 30% realmente lo dedico a pensar. El resto estoy ocupada con la burocracia. Obviamente es algo necesario, pero puede que lo mejor sería que de esos trámites se ocuparan otras personas y los científicos nos dedicásemos plenamente a investigar.

P: ¿Qué consejo les daría a los jóvenes que se quieren dedicar al mundo de la ciencia?

R: Que sean curiosos. Que no se crean nada y pongan todo en duda. Y, sobre todo, que se diviertan, que disfruten. Es un trabajo duro y sacrificado, pero nada aburrido. Si te gusta entender cosas nuevas, las trabas no importan. Esa gratificación cuando llegas a encajar todas las piezas del puzle y resolver el rompecabezas es el mayor regalo que la ciencia te puede hacer.

«La ciencia es un un trabajo duro y sacrificado, pero nada aburrido. Si te gusta entender cosas nuevas, las trabas no importan.»

«Muchas facultades de Reino Unido se matan por conseguir científicos procedentes de España»

Victoria Bueno González, licenciada en Biología y especializada en conservación de la biodiversidad, salió de España en 2016 hacia Reino Unido en busca de un futuro dentro de la investigación. Cuatro años mas tarde, la bióloga nacida en Zamora no solo se ha labrado un puesto como investigadora fuera de su país, su principal objetivo, sino que ha vivido multitud de experiencias tras su paso por Leeds y Bristol. Ahora, avalada por su veteranía en el extranjero, Bueno anima a salir de la zona de confort a todos aquellos científicos y científicas españoles sin oportunidades en España.

Victoria Bueno, investigadora en la Facultad de Biología de la Universidad del Oeste de Inglaterra (UWE).

Decidió salir de España para buscar nuevas oportunidades en Inglaterra y apareció Leeds, ¿Qué estuvo haciendo allí durante su estancia?

Cuando llegué empecé a trabajar en hostelería para pulir el lenguaje. Ya sabes cómo somos los españoles, nos cuesta mucho creernos preparados cuando llegamos a un país nuevo. Después, cuando sentí que estaba lista, comencé a aplicar a las ofertas de trabajo en las que mejor podía encajar según mi especialización. Me dieron un puesto de técnica de laboratorio docente en la Facultad de Bioquímica. Me valió mucho para adentrarme en este mundo, conocer a mucha gente, adquirir experiencia y lograr empezar un doctorado.Descubrí mi verdadera pasión.

Ha dicho que su principal objetivo era empezar un doctorado, ¿Cómo consiguió esa beca de doctorado en Bristol?

Aplicando online a través de todas las páginas web especializadas. Es muy sencillo obtener una beca de doctorado y existen muchos puestos vacantes y  la mayoría están financiados. Además, muchas  facultades de Reino Unido se matan por conseguir científicos procedentes de España.

¿Por qué dice que las facultades de Reino Unido están tan interesadas en los científicos españoles?

Porque la mayoría de los investigadores e investigadoras españolas que vienen de España tienen una mayor formación.  Muchos de los jóvenes de Reino Unido se gradúan y deciden dar el salto, sin ninguna experiencia.

¿Por qué tenía tan claro hacer el doctorado?

Cuando entré en el laboratorio todos mis compañeros eran técnicos y ninguno tenía doctorado, llevaban toda su vida dentro del mismo área. Es totalmente respetable, de hecho, me encantaría volver a trabajar en un laboratorio. Sin embargo, sin un logro de este tipo no puedes avanzar más allá. No quería quedarme en ese puesto para siempre. Necesitaba seguir aprendiendo y descubriendo.

Una vez que consiguió esta beca en el departamento de Biología de la Universidad del Oeste de Inglaterra, ¿Se le preestableció el tema a investigar o usted ya tenía planeada la temática?

La razón por la que escogí aplicar a este doctorado estaba en que se trataba de una mezcla de biología y conservación de la biodiversidad, una temática en la que yo me había especializado con la realización del máster. Lo vi el proyecto perfecto para continuar con mi carrera profesional. Yo siempre me había considerado bióloga de bota y no de bata pero, actualmente, no existe nada estrictamente de campo. Al final, todo se basa en ADN y proteínas.

Estáis trabajando en un método diagnóstico para una enfermedad bacteriana en robles, cuya bacteria puede llegar a matarlos en cinco años. ¿Cómo lo está llevando a cabo?

El método que estamos desarrollando es una técnica aplicada basada en la polymerase chain reaction (PCR) y, dentro de esta, la High Resolution Melting (HRM). Lo más especial e interesante de este proceso es un colorante fluorescente que se intercala con el ADN cuando está en forma de doble cadena. Al poner la muestra sobre dicho colorante, sabremos si hay bacterias, el número concreto y el tipo al que pertenece.

Y tras la utilización de este método diagnóstico, ¿Qué resultados ha obtenido hasta el momento?

He descrito tres nuevas especies de bacterias dentro  del grupo de las pseudomonas. Para conocer su posible función hemos experimentado con tres tejidos vegetales, inyectándoles las bacterias para poder así describirlas. Esto permitirá ahorrar tiempo a aquellos investigadores que se encuentren con este tipo de bacterias en un futuro.

¿Cuál es el objetivo que se le planteó desde el principio?

La idea de esta investigación viene del Forest Research. La principal organización de Reino Unido para la investigación forestal. Necesitaban un método rápido y barato. Ellos poseen una técnica que es seis veces más cara, por lo que no les era rentable procesar grandes cantidades de muestras. El Forest Research recibe numerosas cantidades de ejemplares de todo Reino Unido.

Me ha contado que esta enfermedad mata a los robles en cinco años, ¿Hay alguna forma de evitar que los robles mueran?

No. No es tan fácil como ponerles una inyección de antibiótico y matar las bacterias. Hasta ahora existen muchas líneas de investigación que están intentando averiguar cómo se transmite. Muchas de ellas relacionan las causas con dos hechos. Por un lado, que estas bacterias encontradas en el ADN crean sangrados verticales cuyos fluidos pueden llegar a contagiar. Por otro lado, han encontrado agujeros de salida en forma de ‘D’ realizados por escarabajos que almacenan sus huevos en la corteza y, una vez eclosionan, las larvas entran dentro. A su vez, están investigando si estos escarabajos tienen  dentro de su organismo esas bacterias encontradas en los robles.

Teniendo en cuenta que no existe una cura y que todavía no se sabe ciertamente como se transmite, ¿La mayoría de robles acaban muriendo por esta enfermedad?

Existen casos de robles que se han recuperado volviéndose resistentes a la bacteria. Por un momento piensas: vamos a clonarlos y los plantamos por todo Reino Unido. Esto los haría resistentes a las bacterias. En cambio, esta acción podría tener consecuencias como hacerles más vulnerables  a la sequía. Acabaría matándolos a todos. En este sentido, hay que dejar obrar a la naturaleza.

Afirma que clonar a los robles podría matar a todos ellos en ambientes de sequía, ¿Por qué?

Esto es equiparable con todas las especies. Lo sencillo es clonarse (reproducción asexual). Sin embargo, que no seamos todos clones, la variabilidad genética entre individuos debida a la reproducción sexual, hace que cada uno seamos más o menos aptos para potenciales amenazas a la supervivencia. Es decir, imagine que usted y yo hemos sido clonados y somos más vulnerables al frío. En una situación de condiciones adversas podríamos morir ambos. Que seamos diferentes posibilita que uno de los dos sea más resistente al frío y pueda sobrevivir. Es el éxito evolutivo de un individuo.

¿Qué tiene pensando hacer cuando acabe la tesis doctoral?

Tengo pensando seguir con un postdoctorado. De hecho, tengo una entrevista próximamente en el John Innes Centre de Norwich. Es uno de los centros más prestigiosos en relación a las ciencias de las plantas y los microbios. Trata problemas reales a nivel nacional e internacional. Cruzaré los dedos porque sería un paso muy grande para continuar con mi carrera.

Entonces, ¿No contempla volver a España?

Si me ofrecieran el mismo puesto con las mismas condiciones que tendría en Norwich, me lo pensaría. Por desgracia, no se invierte lo suficiente en mi campo de investigación.

¿Cree que su profesión está mejor valorada en Reino Unido que en España?

Yo creo que sí. No solo en mi campo, sino hablo ya de la profesión de científico como tal. Creo que realmente la sociedad en general no sabe lo que hacemos. Este hecho  también puede influir en la cantidad de dinero que se invierta en ciencia.

¿Cree que existe una mala imagen del científico?

Sí, y en parte es culpa nuestra porque quizá no divulgamos lo suficiente nuestro conocimiento o la forma de comunicarlo no es la más eficiente y accesible. Sin duda, todo científico debería poner de su parte para acercar su conocimiento a toda la gente.

El 8 de marzo fue el día internacional de la Mujer. Hemos avanzado mucho aunque aún queda camino por recorrer. ¿Cree que en Reino Unido se está  valorando más a la mujer en el terreno de la ciencia?

Creo que se está haciendo mucho para conseguir la igualdad eliminando muchos sesgos que siempre han existido. Un ejemplo claro es el grupo de investigación del que formo parte, donde somos todos mujeres. En cambio, en el área de ingeniera solo el 10% son mujeres, siendo uno de los porcentajes más bajos de Europa.  En mi opinión, existen áreas de la ciencia que atraen más a un sexo que a otro. Depende mucho del ambiente en el que se haya crecido. A pesar de esto, creo que se está haciendo un esfuerzo evidente aunque el objetivo no es solo que se valore más a la mujer, sino que camine al mismo paso que el hombre.

Un estudio asegura que los medios de comunicación son críticos en la lucha contra las prácticas pseudocientíficas

 El artículo analiza los principales medios generalistas con mayor audiencia online: El País, El Mundo, La Vanguardia y ABC

Investigadores de la Universidad de Murcia (UMU) aseguran que los medios de comunicación (MM.CC) muestran un posicionamiento crítico en las noticias relacionadas con aquellas prácticas y terapias carentes de evidencia científica.  Esta investigación, publicada en la Revista Española de Comunicación en Salud (RECS), analiza aquellas noticias, relacionadas con las falsas ciencias o fake sciences, publicadas por los principales medios con mayor audiencia en Internet: El País, El Mundo, La Vanguardia y ABC. El objetivo principal de este estudio es determinar el tratamiento informativo que los MM.CC realizan en relación a estas prácticas.

A pesar de ese posicionamiento crítico, La Vanguardia defiende las pseudociencias en un 16% del total de sus noticias. Algunos ejemplos de este tipo de noticias son las entrevistas al Nobel de Matemáticas Luc Montagnier, dónde defiende que la base científica de la homeopatía se ignora porque molesta a la economía, o Mario Moncayo, un licenciado en Medicina que dirige su propio instituto de investigación en Ecatepec (México) y se posiciona en contra de los transgénicos.

Por otro lado, la pluralidad de fuentes es otra de las principales características en más de la mitad de las piezas publicadas por los medios generalistas, contando con más voces de expertos que de políticos. “La posibilidad de contar con una gran diversidad de fuentes confiere un importante plus de calidad a la información en todos los diarios”, afirma José Antonio Sánchez-Hernández, uno de los principales autores de la investigación. 

En cuanto al punto de vista desde el que se tratan las informaciones sobre pseudociencias, se aborda principalmente como una problemática social relacionada con las consecuencias negativas para la salud de la población, la necesidad de llevar a cabo una ardua regulación por parte de los poderes públicos, el uso fraudulento de estas prácticas con un claro objetivo de obtener beneficios engañando a los pacientes, el deber de los profesionales de la salud de respetar el código deontológico y de no recomendar estos tratamientos, y la obligación de emprender acciones encaminadas a la alfabetización científica de la sociedad y el empoderamiento de los pacientes. 

Por otro lado, los resultados arrojan que cuando los medios generalistas españoles abordan la temática de las pseudociencias lo hacen, sobre todo, mediante piezas informativas individuales exceptuando El País que adquiere un mayor compromiso a través de la inserción de editoriales de forma regular. “Se trata del único diario en el que hemos detectado información en formato de opinión o entrevista, en un ejercicio de responsabilidad al posicionarse contra la permisibilidad de los poderes públicos con las pseudoterapias”, señala Sánchez-Hernández. 

Por último, en cuanto a la distribución específica por cada uno de los medios, La Vanguardia es el que más informaciones sobre pseudociencia incluye en secciones distintas (47%). Por el contrario, destaca El País por insertar el 59% de las informaciones de esta temática en la sección “Ciencia”, ABC incluye el 60% en “Sociedad y vida”, y El Mundo ubica el 57% en la sección “Salud” (57%). Este hecho indica que los diarios no tienen una sección única para publicar este tipo de informaciones, sino que estas son distribuidas en distintas secciones. 

La proteína SIRT1 podría ser clave en el desarrollo de tratamientos contra la enfermedad de Parkinson

Los científicos del grupo Park, equipo de investigación del Departamento de Bioquímica y Biología Molecular y Genética de la Facultad de Enfermería y Terapia Ocupacional de la Universidad de Extremadura y CIBERNED, han apuntado a la modulación de la actividad deacetilasa de la proteína SIRT1, que contribuye a la regulación y a la longevidad celular, como diana para el diseño de tratamientos que combatan la enfermedad de Parkinson en aquellos pacientes en los que su causa se desconoce. Lo esencial de esas terapias es que ralentizarían o incluso detendrían el avance de la enfermedad.

El tratamiento para estos pacientes cuya enfermedad de Parkinson tiene un origen indeterminado consistiría en alcanzar un nivel basal de mitofagia suficiente mediante la potenciación de la actividad deacetilasa de la proteína SIRT1, explica Sokhna M. S. Yakhine-Diop, doctora en Bioquímica y Biología Molecular y Genética por la Universidad de Extremadura y autora principal del paper de la investigación. La posibilidad de dicha terapia es gracias al estudio del mecanismo molecular de la enfermedad de Parkinson. “Así, podemos hallar vías de señalizaciones que se encuentran modificadas en las células de los pacientes y diseñar fármacos que actúen específicamente sobre esos puntos”, indica Yakhine-Diop.

SIRT1 es una proteína que regula el proceso celular de la mitofagia, una forma de autofagia selectiva. La autofagia consiste en la degradación y reciclaje de aquellas proteínas que no se usan, que están defectuosas y de aquellos orgánulos celulares que están dañados. La mitofagia es la degradación y reciclaje selectivos de las mitocondrias, orgánulos celulares que se encargan de suministrar la mayor parte de la energía necesaria para la actividad celular. Tanto la autofagia como la mitofagia están alteradas en las células de los pacientes de Parkinson.

SIRT1 pertenece al grupo de las proteínas histonas deacetilasas. Estas proteínas se encargan de deacetilar, es decir, de eliminar de las estructuras proteicas una molécula denominada grupo acetilo. Las proteínas histona acetiltransferasas se encargan, por su parte, de acetilar, de añadir esos grupos acetilo. La acetilación y la deacetilación son reacciones químicas que modifican las proteínas e influyen en sus actividades y funciones.

La mayoría de los casos de enfermedad de Parkinson son idiopáticos, que se refiere a que son debidos a causas desconocidas. Aun así, se sospecha que se producen por factores ambientales, como la exposición a determinadas toxinas. Sin embargo, sí que se conocen algunas causas específicas como mutaciones genéticas, que representan el 10% de los casos de Parkinson. Mediante cultivos celulares cedidos por el doctor Adolfo López de Munain, Jefe de Sección del Servicio de Neurología del Hospital Universitario Donostia, los investigadores del grupo Park analizaron el estado de acetilación de las proteínas en fibroblastos (células del tejido conectivo) de individuos sanos que actuaron de control, enfermos de Parkinson debido a la mutación G2019S LRRK2 y pacientes cuya enfermedad de Parkinson es de causa desconocida. Los científicos observaron un estado de hiperacetilación en aquellas células que contenían la mutación G2019S LRRK2 e hipoacetilación en los casos cuyas causas eran desconocidas.

Imagen de inmunofluorescencia, una técnica de detección mediante anticuerpos unidos a una sustancia fluorescente. En rojo se puede apreciar cómo las proteínas de las células de enfermos de Parkinson de causa desconocida (IPD) están menos acetiladas que las de las células control (Co) y las células con la mutación G2019S LRRK2. En azul están marcados los núcleos de dichas células. Yakhine-Diop et al., 2018. Frontiers in celular Neuroscience.

Sin embargo, al fijarse en las proteínas que regulan la autofagia, vieron en las células con la mutación G2019S LRRK2 que la proteína histona deacetilasa SIRT1 se encuentra fosforilada, es decir, con un grupo fosfato, lo cual desencadena su activación, y desfosforilada en aquellas cuya enfermedad de Parkinson era de origen desconocido. Todo esto se traduce en que en las células de los pacientes de Parkinson con la mutación genética G2019S LRRK2 se lleva a cabo la mitofagia. Mientras, en las células de los pacientes de Parkinson de causa desconocida la mitofagia está disminuida. Vieron una mayor muerte celular en las muestras de los casos de origen desconocido que en las de la mutación G2019S LRRK2, por lo que llegaron a la conclusión del efecto protector de la mitofagia.

Para las células con la mutación genética G2019S LRRK2 todavía no está claro cuál sería la táctica adecuada para combatir la patología. Esto quiere decir que no hay un tratamiento único para todos los enfermos de Parkinson. “Cada paciente es un mundo y habría que abogar por analizar qué ocurre en sus procesos moleculares para diseñar una terapia personalizada. Aunque puedan tener muchas cosas en común entre ellos, un tratamiento generalizado no tiene por qué funcionar para todos”, concluye Yakhine-Diop.

En el futuro, esperan ampliar la investigación a las alteraciones en el metabolismo para encontrar biomarcadores de la enfermedad de Parkinson. Los biomarcadores son moléculas cuyos niveles o función sirven como indicador del estado biológico del individuo, aportando información sobre si está sano o enfermo. Su identificación es clave para la detección temprana de distintas patologías. En la actualidad, los signos clínicos son la única opción de diagnóstico de Parkinson, cuando ya la mayoría de neuronas se han degenerado y sólo se pueden mitigar los síntomas. “Con los biomarcadores y junto al estudio de los mecanismos moleculares de la enfermedad de Parkinson se podría conseguir un diagnóstico precoz y el diseño de fármacos para tratarla antes de que esté muy avanzada y fuera demasiado tarde. Ese es nuestro objetivo”, señala Yakhine-Diop.

Artículos:

  • Yakhine-Diop, S., Niso-Santano, M., Rodríguez-Arribas, M., Gómez-Sánchez, R., Martínez-Chacón, G., & Uribe-Carretero, E. et al. (2018). Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson’s Disease Patients. Molecular Neurobiology, 56(4), 2466-2481. doi: 10.1007/s12035-018-1206-6
  • Yakhine-Diop, S., Rodríguez-Arribas, M., Martínez-Chacón, G., Uribe-Carretero, E., Gómez-Sánchez, R., & Aiastui, A. et al. (2018). Acetylome in Human Fibroblasts From Parkinson’s Disease Patients. Frontiers In Cellular Neuroscience, 12. doi: 10.3389/fncel.2018.00097

Si quieres pasar un buen rato y poner a prueba tus conocimientos acerca de la noticia te invitamos a hacer el siguiente test:

El dolor, la quinta constante vital

Se estima que un 80% de las personas experimentarán algún tipo de dolor a lo largo de su vida y 1 de cada 5 personas, en España, lo sufrirán de manera crónica.

El dolor es una respuesta orgánica que provoca una sensación molesta más o menos intensa. La percepción del dolor resulta de una activación localizada de las células nerviosas que avisan de que algo no va bien. El doctor Carlos Tornero, jefe de Servicio de Anestesiología del Hospital Clínico Universitario de Valencia, explicó las implicaciones y los riesgos del dolor, su evaluación y tratamiento durante una charla dirigida a los alumnos del grado de Enfermería del CEU Cardenal Herrera el pasado jueves.

Ante un mismo estímulo, lesión o intervención quirúrgica, la sensación de dolor varía entre distintas personas. Son muchos los aspectos que pueden influir en esta subjetiva percepción del dolor: haber sufrido lesiones previas, la técnica anestésica utilizada, la actitud pesimista o catastrofista o la falta de suficiente información, entre otros.  También la genética influye en la sensación de dolor: “Los pelirrojos tienen otra predisposición al dolor”, remarcó el ponente.

Durante su exposición, Tornero resaltó la importancia de la formación de los futuros profesionales de la salud en este campo y la necesidad de mejorar la calidad asistencial. El doctor señaló que la gran mayoría de los pacientes que salen de una intervención manifiestan algún dolor durante el postoperatorio. El licenciado en Medicina y Cirugía comentó, además, que esta situación, normalizada en el pasado, es un reflejo de que el tratamiento que se está aplicando en estos casos debería mejorar.  En este sentido, el ponente enumeró algunos de los muchos riesgos que pueden aparecer si se tiene dolor durante el postoperatorio: isquemia miocárdica, complicaciones pulmonares, enfermedad tromboembólica, prolongación de la estancia hospitalaria y cronificación del dolor, entre otros. En este aspecto, insistió: “El mal control del dolor influye en el devenir de las personas”. Además, el médico defendió la aplicación de protocolos de analgesia multimodal adaptados a cada paciente. Este tipo de protocolos se basan en el empleo de diferentes técnicas y medicamentos para reducir la sensación de dolor.  La empatía, la escucha al paciente y el empleo de técnicas de relajación psicológica, por ejemplo, juegan un papel muy importante en el aumento del efecto analgésico. “No todo son fármacos”, apuntó el doctor.

Después de exponer las complicaciones del dolor, Tornero se centró en la evaluación que los profesionales de la salud hacen del dolor. El experto se mostró crítico con los datos que se recogen en las hojas de enfermería:“Si el dolor fuese evaluado igual que el resto de indicadores del estado de salud, serían posibles mejores opciones de tratamiento”, apuntó refiriéndose a las cuatro constantes vitales que sí recogen los registros: frecuencia cardiaca, temperatura, frecuencia respiratoria y presión arterial.

El Dr. Carlos Tornero junto a dos profesores durante el turno de preguntas

El ponente animó a los alumnos asistentes a interesarse por la investigación. Brevemente, describió una de sus líneas de investigación que se centra en el papel de las células de glia (células que sirven de soporte al resto de células del sistema nervioso) como mediadoras de la transmisión del dolor.

El autor de más de una treintena de artículos de investigación sobre el dolor y sus tratamientos reiteró ante el estudiantado que el acceso al tratamiento del dolor es un derecho humano fundamental y que la labor de todos los profesionales del ámbito de la salud es esencial para lograrlo.